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Abstract— Faults on photovoltaic (PV) systems can 

drastically degrade Microgrids reliability, and stability, if not 

promptly detected. Thus, a novel Fault Detection and Diagnosis 

(FDD) methodology is proposed for online monitoring of PV 

system DC side. This method is based on multiple non-linear 

regression to emulate the PV behavior at different weather 

conditions precisely. The regression method is formulated on the 

relationship of PV characteristics at the maximum operating 

point without irradiation sensors. Then, to restrain 

uncertainties and measurement noises, a Kalman Filter 

algorithm is used. In addition, an adaptive threshold based on 

non-linear polynomial regression is developed to detect early 

fault signature in a PV system. To evaluate the performance of 

the proposed FDD approach, short circuit fault is investigated 

via MATLAB/Simulink® at various weather conditions. The 

result reveals the effectiveness of the proposed FDD method to 

detect soft faults even at low irradiation. 

Keywords— PV systems, fault detection and diagnosis, 

Kalman filter, multiple non-linear regression, soft faults, multi-

surface. 

I. INTRODUCTION 

Renewable Energy, such as photovoltaic (PV) systems, is 
a key contributor toward a carbon-free future generation 
power grid. According to the International Renewable Energy 
Agency (IRENA), the global cumulative PV capacity 
integrated into Microgrids (MGs) has grown exponentially 
[1], with massive expectations rising in the wake of current 
global energy crisis. However, the proliferation of PV systems 
into MGs rises new challenges concerning dependability and 
stability under all circumstances [2]. Although, PV system 
encounter a variety of physical faults due to the long outdoor 
exposure. Faults can take place on different PV sides (DC/AC 
side), where Short Circuit (SC) at DC side, according to PV 
risk analysis [3], represents the most common electrical faults 
with the highest severity degree. Consequently, faults in PV 
system can drastically destabilize MGs or even turn into 
catastrophic failures, resulting in cascading outages 
phenomenon [4]. Therefore, a real-time Fault Detection and 
Diagnosis (FDD) strategy is critical to detect and identify 
early fault signature in PV systems. FDD strategy enhance 
MG stability and security by allowing its controller to take the 
appropriate accommodating and mitigating action [5]. Thus, 
FDD scheme is paramount to preserve the MG required 
performance even under fault occurrence. 

As a result, electrical-based FDD methods have gained 
recently outstanding popularity due to their robustness [6].  
These FDD methods can be broadly classified into two main 
approaches: (1) Current-Voltage (𝐼 − 𝑉) curve analysis, or (2) 
power losses analysis through power or current and voltage 

measurement under global Maximum Power Points (MPP). 
For instance, to identify abnormal behavior, in [7] a low-cost 
methodology is developed based on the 𝐼 − 𝑉 curve analysis 
by periodically measuring open circuit voltage and short 
circuit current. In [8] the 𝐼 − 𝑉 curve is used to detect ground 
fault, SC, and faulty connection by comparing the curve of 
healthy string to those of the faulty strings. Then, the method 
is integrated into principal component analysis to classify 
these faults. However, 𝐼 − 𝑉  curve method can only be 
performed during day/light hours and not able to detect 
intermittent faults in a PV plant. In addition, it requires special 
expensive tool. 

Alternatively, FDD method based on PV electrical 
measurement under MPP are more promising. For instance, in 
[9] fault alarm is triggered if the difference between the simple 
power-based method and measured MPP power outputs 
exceed a defined threshold. Although the detection process is 
simple, the unpredicted changes in irradiation could generate 
false alarms. In addition, the method could not classify and 
localize faults. In [10] a cubic polynomial regression method 
based on the relationship of PV characteristics in combination 
with KF is used to diagnose output power lowering in a PV 
array. The diagnosis method is performed at elevated 
Irradiation (G>600 W/m²) to detect temporary and partial 
shading. However, this method is not reliable as the single 
cubic regression cannot describe the high nonlinearity of 𝐼𝑚𝑝𝑝 

and 𝑉𝑚𝑝𝑝  relationship at lower irradiation. Thereby, this 

method could generate problematic false alarms at low 
irradiation. To improve the diagnosis strategy, in [11] we 
proposed a multi-zone nonlinear polynomial regression to 
detect soft SC in a PV system even at low irradiation. 
However, this method is a two-step methodology where the 
measured MPP voltage and current are projected to the 
standard temperature (25°C) before extracting the reference 
diagnosis using the multi-zone polynomial regression. Thus, 
the estimation error will certainly increase, leading to an 
inadequate diagnosis strategy. 

Toward this end, this research provides a novel FDD 

method based on electrical measurement under global MPP 

to detect soft SC faults in PV systems, avoiding the use of 

irradiation sensors. The method presented is formulated on a 

statistical data-driven approach based on Multiple nonlinear 

Polynomial Regression (MPR) to emulate the PV 

characteristics under various weather conditions accurately. 

The MPR method directly derives the relationship of 

electrical measurement at various temperatures levels. In 

addition, to restrain the uncertainties and measurement 

noises, the regression method is integrated into a model based  

11th IEEE INTERNATIONAL CONFERENCE ON SMART GRID June 04-07, Paris, FRANCE

icSmartGrid 2023

mailto:y.alrifai@estia.fr
mailto:a.aguilera-gonzalez@estia.fr
mailto:i.vechiu@estia.fr


Table 1. PV module parameters. 

 

through Kalman Filter (KF) algorithm for optimal estimation 

under dynamic changing conditions. Further, an adaptive 

threshold based on nonlinear polynomial regression in the 

state of temperature variable is developed to detect early fault 

signatures in a PV plant even at low irradiation. Finally, the 

performance of the proposed FDD method is evaluated via 

MATLAB/Simulink® at various weather conditions. 
The remainder of this paper is structured as follow: 

Section II describes the multiple nonlinear regression method 
developed in this study. The FDD strategy using KF is 
presented in Section III, along with the proposed adaptive 
threshold. The simulation results are discussed in Section IV. 
Finally, the conclusion and perspectives are given in Section 
V.  

II. MULTIPLE NONLINEAR POLYNOMIAL REGRESSION METHOD 

The main purpose is to establish a reliable estimation 

method to examine the PV status despite the harsh operating 

conditions. Thus, a statistical regression method is proposed 

to describe the nonlinear PV behavior at variable irradiation 

and temperature. The regression method is formulated at 

global MPP based on the relationship between PV 

characteristics; current, temperature and voltage ( 𝐼𝑚𝑝𝑝 , 𝑇,  

and 𝑉𝑚𝑝𝑝 ), avoiding the use of irradiation sensors. The 

statistical relationship is derived from MPR based on multiple 

independent variables to predict optimally the outcome 

response variable 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 = 𝑓(𝐼𝑀𝑃𝑃 , 𝑇) at various weather 

conditions. Therefore, to establish the numerical relationship 

among variables a dataset, based on the real meteorological 

profiles [12], is initially generated using the 1-single diode 

model with additional shunt resistance in parallel [13], as 

expressed by: 

 

𝐼𝑝𝑣 = 𝑁𝑝𝐼𝑝ℎ −𝑁𝑝𝐼0 [𝑒
1
𝑎𝑉𝑡

(
𝑉𝑝𝑣
𝑁𝑠
+
𝐼𝑝𝑣𝑅𝑠
𝑁𝑝

)
− 1]

−
𝑁𝑝
𝑉𝑝𝑣
𝑁𝑠
+ 𝐼𝑝𝑣𝑅𝑠

𝑅𝑠ℎ
 

 

 

(1) 

where 𝐼𝑝ℎ  is the photocurrent,  𝑎  is the ideality factor, 𝐼0 

denotes the dark saturation current, 𝑉𝑡 is the thermal voltage. 

The shunt resistance 𝑅𝑠ℎ represents the leakage current path 

caused by the distributed manufacturing defects inside the 

solar cell. The series resistance 𝑅𝑠 stands for the power 

dissipation caused by the thermal effect in the whole junction 

substrates and the electrical contacts. 𝑁𝑠 and 𝑁𝑃  are the 

number of series and parallel cells in a module, respectively. 

𝐼𝑝𝑣 and 𝑉𝑝𝑣  depict the terminal current and voltage of the PV 

module, respectively. In this paper, Soltech-1STH-350-WH 

panel is used, and its electrical parameters are presented in 

Table 1. In addition, a maximum power point tracking based 

on KF technique is employed to harvest the maximum power 

yield in the PV system [14].  

Thereby, the generated datasets via 

MATLAB/Simulink® are split into training data (660 data 

for each feature) and test-data (364 data for each feature). 

Aiming to extract the best-fitting surface and avoid high 

variance, a loss-function analysis is conducted at different 

MPR degrees under training/test dataset. The loss-function is 

based on three evaluation indices as follow:  
 

 

where 𝑦(𝑖)  is the real measured value, �̂�(𝑖)  denotes the 

estimated value of the polynomial, 𝑜  is the number of 

samples, �̅�(𝑖)  represents the mean of real values. The 

numerical goodness-fit 𝑎𝑑𝑗 − 𝑅2  describes how well the 

predicted variables can explain the variation in the response 

variable, considering the number of predictors 𝐾. In addition, 

RMSE gives an image of the error magnitude, while MAPE 

is useful for understanding the relative size of the error.  

A rigorous estimation method is critical for reliable 

diagnosis strategy, allowing to detect soft faults in PV 

systems while minimizing missing and false alarms even at 

minor irradiation. 

A. Single surface MPR 

The relationship between voltage diagnosis indicator  

(𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔) and the independent variables (𝐼𝑚𝑝𝑝, 𝑇) can be 

described by single surface MPR as expressed by Eq.(3). 

 

𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔  =  ∑ ∑ 𝛽𝑖𝑗𝐼𝑚𝑝𝑝
𝑖 𝑇𝑗

{𝑝}

{𝑗=0}

{𝑛}

{𝑖=0}

 

 

(3) 

 

where 𝑛  and 𝑝  stands for the polynomial degree of the 

independent variable 𝐼𝑚𝑝𝑝 and 𝑇, respectively. 𝛽𝑖𝑗 represents 

the MPR coefficient. The outcome variable 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 

represents the voltage reference diagnosis (estimated by KF). 

The goodness fit of MPR under training data at different 

degrees is evaluated in Fig. 1. The MPR degrees with 

coefficients less than 8 are underfitted. Even the 4th 

degree  𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 = 𝑓(𝐼𝑚𝑝𝑝
3 , 𝑇1)  have an RMSE =4.8 V. 

Whereas, the higher degrees have poor fitting accuracy. The 

seventh degree 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 = 𝑓(𝐼𝑚𝑝𝑝
4 , 𝑇3)  have an RMSE = 

3.5V.  Further, the evaluation under the test-dataset, Fig. 2, 

reveals that the single surface MPR are strongly overfitted at 

minor irradiation. The percentage estimation error is greater 

than 15% for low degrees, and more than 7% for higher 

degrees. Consequently, the single surface MPR method are 

1SolTech 1STH-350-WH (350W) 

Maximum Power  (𝑃𝑀𝑃𝑃) 349.59 W 

Open Circuit Voltage (𝑉𝑜𝑐) 51.5 V 

Short-Circuit Curent (𝐼𝑠𝑐) 9.4 A 

Voltage at 𝑃𝑀𝐴𝑋  (𝑉𝑀𝑃𝑃) 43 V 

Current at 𝑃𝑀𝐴𝑋 (𝐼𝑀𝑃𝑃) 8.13 A 

Temperature Coefficient of 𝑉𝑜𝑐  (α) -0.36 %/°C 

Temperature Coefficient of 𝐼𝑠𝑐  (β) 0.09 %/°C 

Configuration          9S-21P 

𝑎𝑑𝑗 − 𝑅2 = (1 − 𝑅2)
(𝑜 − 1)

(𝑜 − 𝐾 − 1)
  

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑[𝑦(𝑖) − 𝑦 ̂(𝑖)]2
𝑜

𝑖=1

 

 

𝑀𝐴𝑃𝐸 =
1

𝑛

∑ |𝑦(𝑖) − 𝑦 ̂(𝑖)|𝑜
𝑖=1

𝑦(𝑖)
 

 

 

 

 

 

(2) 
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not reliable, resulting in missing and false alarms. Therefore, 

to describe the relationship of PV characteristics accurately, 

an improved estimation method is proposed based on the 

multi-surface MPR. 

B. Multi-surface MPR method 

Aiming to reduce the estimation error due to the high 

nonlinearity, a multi-surface according to irradiation level is 

suggested, as represented in Fig. 3. Thus, the relationship is 

described by three surfaces: The first surface in blue 

represents the high irradiation (HG) region (where G ≥ 400 

W/m²), the Low irradiation (LG) is represented by the second 

surface in red (where 100 ≤  G<400 W/m²), while the Very 

Low irradiation (VLG) region is represented by the third 

surface in green (where G <100 W/m²). As this method is 

irradiation sensor less, hence, the surfaces are split with 

respect to MPP current which is an irradiation image.  

The loss function analysis for the multi-surface MPR 

method at different degrees under fitting data is evaluated in 

Fig. 4. The estimation errors using multi-surface MPR have 

significantly dropped in different regions. Notably, the third-

degree multi-surface 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 = 𝑓(𝐼𝑚𝑝𝑝
2 , 𝑇1) is better fitted 

(RMSE < 2.56 V over all regions) than the seventh-degree 

single surface MPR (RMSE = 3.6 V). Further, the best fitting 

surfaces is achieved by the 5th degree 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 = 𝑓(𝐼𝑚𝑝𝑝
3 , 𝑇2) 

with a less estimation error at HG and LG regions (RMSE < 

0.08 V). Nevertheless, the 4th degree 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 = 𝑓(𝐼𝑚𝑝𝑝
3 , 𝑇1)  

possesses a good estimation performance, and notably 

outperforms 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 = 𝑓(𝐼𝑚𝑝𝑝
2 , 𝑇2) at VLG. However, the 

third surface for different degrees at VLG is relatively more 

biased. Although, since the voltage variation at VLG is 

around 12V, the goodness fit is reasonable for high MPR 

degrees. 

To avoid overfitting the different multi-surface MPR 

degrees are re-assessed under the test-dataset, as shown in 

Fig. 5. The test-dataset unfold that at HG and LG regions 

even low MPR degrees have low variance. Nevertheless, as 

the variation of voltage at HG is small (around 0.07V), a 

robust estimation method is paramount to avoid missing and 

false alarms. Accordingly, 4th MPR degrees have reasonable 

estimation accuracy. Although, the fourth degree 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 =

𝑓(𝐼𝑚𝑝𝑝
2 , 𝑇2)  has relatively higher estimation error at VLG 

(MAPE = 0.72%), where the maximum percentage error 

exceeds 2%, as shown in Fig. 6. However, the 4th-degree 

𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 = 𝑓(𝐼𝑚𝑝𝑝
3 , 𝑇1) at VLG is more accurate (MAPE = 

0.34 %), with maximum percentage error less than 1%. 

Further, the higher degrees are better fitted with lower 

maximum percentage error at VLG region. However, high 

degrees impose higher computational complexity, affecting 

the performance of the diagnosis system. Thus, as a trade-off 

between calculation charge and estimation accuracy, the 4th 

degree (𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 = 𝑓(𝐼𝑚𝑝𝑝
3 , 𝑇1)) multi-surface is favored  

 
Fig. 1. Loss function of single surface MPR under training data. 

 
Fig. 2. Percentage error of single surface under test-data. 

 
Fig. 3. Multi-Surface MPR method. 

 
Fig. 4. Loss function multi-surface MPR under training data 

 
Fig. 5. MAPE multi-surface MPR under test-data. 

 
Fig. 6. Percentage error of multi-surface MPR under test-data. 
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over the three regions. It is worth noting that the same degree 

is chosen over all surfaces, as the same order impose the same 

KF structure, avoiding additional complexity. Accordingly, 

the 4th multi-surface MPR can be formulated as follows: 

 

𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔(𝐼𝑚𝑝𝑝, 𝑇)

=

{
 
 
 
 

 
 
 
 
 ∑ ∑ 𝛹𝑖𝑗𝐼𝑚𝑝𝑝

𝑖 𝑇𝑗 

{1}

{𝑗=0}

{3}

{𝑖=0}

            ∀ 𝐼 ≥ 68 𝐴 | 𝛹31 = 0

 ∑ ∑ 𝜑𝑖𝑗𝐼𝑚𝑝𝑝
𝑖 𝑇𝑗 

{1}

{𝑗=0}

{3}

{𝑖=0}

    17 ≤ 𝐼 < 68 𝐴 | 𝜑31 = 0

  ∑ ∑ 𝛿𝑖𝑗𝐼𝑚𝑝𝑝
𝑖 𝑇𝑗 

{1}

{𝑗=0}

{3}

{𝑖=0}

                𝐼 < 17 𝐴 |  𝛿31 = 0

 

 

 

 

 

 

 

(4) 

 

where 𝛹,𝜑,𝛿 represents the MPR coefficient at HG, LG, and 

VLG, respectively. The estimation method proposed in this 

paper is dependable and able to generalize new dataset at 

different weather conditions. Consequently, this accurate 

estimation method will lead to a reliable FDD strategy over 

all irradiation regions, allowing to detect soft faults while 

minimizing missing and false alarms.  

III. FAULT DETECTION AND DIAGNOSIS METHOD 

For a stochastic estimation under noisy measurements, the 

regression method presented in this research study is 

integrated into a model-based method through KF algorithm. 

The structure of the proposed diagnosis algorithm is 

schematically illustrated in Fig.7. The FDD model-based 

approach consists of two consecutive stages: residual 

generation and residual evaluation. 

A. Residual generation. 

Aiming to adapt the monitoring system to PV dynamic 

changes and unpredicted situations while handling model 

uncertainties and measurement noises [15], the MPR  method 

is combined with KF algorithm. This algorithm is employed 

to estimate optimally the PV reference characteristics 

(Eq.(4)) to diagnose soft faults in a PV system. The MPR is 

formulated into a state space representation as follow: 

 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝜔(𝑘) 
 

ȥ(𝑘) = 𝐶𝑥(𝑘) + 𝜗(𝑘) 

 

(5) 

 

where, the state vector 𝑥(𝑘) represents the MPR dependent 

variables from Eq.(4) for voltage diagnosis indicators. 𝐴 and 

𝐶 are the state and output matrices, respectively. While ȥ(𝑘) 
denotes the measurement that represents the independent 

variables 𝐼𝑚𝑝𝑝, and 𝑇. Finally, ω and ϑ are respectively the 

process and measurement zero mean Gaussian white noises. 

The KF equations fall into two-phase process: 

1) Time update (prediction state) 

Firstly, the recursive algorithm predicts the state using the 

mathematical model by projecting ahead the current state and 

error covariance to get a priori estimate for the next time step 

as follows:  

�̂�𝐾
− = 𝐴�̂�𝐾−1 

𝑃𝐾
− = 𝐴𝑃𝐾−1𝐴

𝑇 + 𝑄 

 

(6) 

 

where �̂�−, 𝑃− are the priori state and covariance estimate at 

iteration ( 𝐾 ) from the previous iteration ( 𝐾 − 1 ), 

respectively. 𝑄 is the process noise.  

2) Measurement update 

The priori estimates are then corrected by the Kalman 

gain (𝑘𝑘) to obtain the posteriori states as given by Eq.(7). 

𝑥𝐾 = 𝑃𝐾
−𝐶𝑇(𝐶 𝑃𝐾

− 𝐶𝑇 + 𝑅)−1 

 �̂�𝐾 = �̂�𝐾
− + 𝑘𝐾( ȥ𝑘 − 𝐶 �̂�𝐾

−) 

𝑃𝐾 = (𝐼 − 𝑘𝐾𝐶)𝑃𝐾
− 

 

 

(7) 

 

where  �̂�𝐾  is the update state. The covariance 𝑃𝐾  is a positive 

definite symmetric matrix with a large initial value 𝑃0 =
𝑑𝑖𝑎𝑔(4) that declares low credibility for initial guess. 𝑅 is 

the measurement noise covariance. Indeed, the matrices 𝑄 

and 𝑅 are diagonal given more weights to the model.  

B. Residual evaluation. 

The second stage represents the procedure of decision-

making. The PV’s status is examined by comparing the 

analytical predicted value by KF ( 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 ) with the 

measured 𝑉𝑚𝑝𝑝 . If the discrepancy exceeds an adaptive 

threshold, considering the model uncertainties, a fault alarm 

is triggered. To minimize missing and false alarms, a 

statistical threshold is formulated on MPR uncertainties in the 

state of temperature variables. This adaptive threshold is 

developed on quadratic polynomial regression based on the 

loss function analyzed in Section II. In addition, the 

maximum percentage error is significantly lower at elevated 

 

Fig.7. FDD general scheme. 
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irradiation comparing with that at VLG. Thus, to keep the 

threshold closer to the reference diagnosis 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔  as 

possible, the adaptive threshold is divided into two zones and 

can be formulated as follow: 

 

𝑀𝑃𝐸𝑉(𝑇) =

{
  
 

  
  ∑  𝛳𝑘𝑇

2−𝑘 

2

𝑘=0

            ∀ 𝐼 ≥ 17 𝐴 

∑  𝛬𝑘𝑇
2−𝑘 

2

𝑘=0

                𝐼 < 17 𝐴

  
 

 

 

 

 

(8) 

 

where 𝑇  denotes the measured temperature. 𝛳𝑘  and 𝛬𝑘 

represents the polynomial coefficients at elevated irradiation 

and VLG, respectively. The coefficients are based on the 

maximum estimation error 𝑀𝑃𝐸  for voltage diagnosis 

indicator (𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔). Thus, the threshold boundaries are set 

as follow: 

 
(1 − 𝑀𝑃𝐸𝑉)𝑉𝑀𝑃𝑃(𝑘)⏟            

𝐿𝑉

< 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔(𝑘)

<  (1 + 𝑀𝑃𝐸𝑉)𝑉𝑀𝑃𝑃(𝑘)⏟            
𝑈𝑉

 

 

 

(9) 

where 𝑈𝑉  and 𝐿𝑉  stands for the upper and lower threshold. 

Accordingly, the PV state is examined using a new Boolean 

fault vector 𝑓𝑉 ∈ {0,1} as given in Eq.(10): 

 

𝑓𝑉 = {

1, 𝑖𝑓 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 > 𝑈𝑉 

           𝑜𝑟 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔 < 𝐿𝑉
 

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(10) 

 

Thus, if the adaptive threshold gets violated, the fault 

vector is settled to 1 generating an alarm that indicates the 

presence of a fault. Otherwise, the fault vector 𝑓𝑣 remains 0 

denoting a healthy condition.  

IV. SIMULATION RESULTS 

To evaluate the performance of the proposed FDD 

methods, two scenarios, (A) healthy and (B) soft SC fault, are 

investigated in MATLAB/Simulink®. The irradiation and 

temperature profile adopted in the simulation is provided in 

Fig. 8. The main idea is to examine the robustness of the 

proposed FDD method at the different surfaces and extreme 

temperatures [-2°C; 53°C]. From 𝑡 = 0 sec to 𝑡 = 4 sec the 

simulation addresses the diagnosis strategy at HG. From 𝑡 =
4 sec to 𝑡 = 8 sec the diagnosis scheme is evaluated at LG. 

the remaining time is for evaluating the FDD at VLG.  

A. Healthy conditions. 

In this scenario, a healthy condition is considered to 

assess the reliability of the proposed FDD scheme at different 

weather conditions. As shown in Fig. 9, The residual (𝑅𝑉) 

(i.e., the difference between the measured 𝑉𝑚𝑝𝑝  and the 

estimated 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔) are very small. At HG and LG, from 𝑡 =

0 sec  to 𝑡 = 8 sec, 𝑅𝑉   is less than 0.5 V, since the MPR 

method is perfectly accurate over these two regions. 

 
Fig. 8. Irradiation and temperature profile. 

 
Fig. 9. Healthy condition: residual magnitude and fault vector. 

 
Fig.10. Healthy condition: fault diagnosis. 

 
Fig.11. Unhealthy condition: SC magnitude and percentage. 

 
Fig. 12. Unhealthy condition: fault diagnosis 

 
Fig. 13. Unhealthy condition: fault vector. 
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However, as the maximum percentage error of MPR slightly 

increases at VLG, the residuals marginally increase to 𝑅𝑉 = 

1V at VLG. Consequently, it is possible to appreciate in 

Fig.10 that despite the harsh operating conditions, the 

estimated indicator 𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔  is maintained within the 

adaptive boundaries. At HG and LG, the adaptive threshold 

is very close to the reference diagnosis indicators, since the 

MPR is exactly accurate. Although, from  𝑡 = 8 sec to 𝑡 =
14 sec, the thickness of threshold slightly increases as the 

maximum percentage error (Eq.(8)) is higher at VLG. 

However, due to the abrupt drop of irradiation with the 

decreasing of temperature, the threshold gets violated at 𝑡 =
2, 4,  and 8  sec, as highlighted by black circles in Fig.10.  

Thus, to avoid these false alarms, due to MPR’s coefficient 

transition and abrupt weather changing, an alarm delay 

( 𝑡𝑑 =0.1 sec) is added. Thereby, since the threshold is 

respected, the fault vector 𝑓𝑉 in red remains 0, as shown Fig. 

9, denoting a healthy PV state.  

B. Unhealthy conditions: Intermittent SC fault 

 This scenario investigates the performance of the 

proposed FDD method for detecting soft SC in a PV system. 

The fault is configured by adding a soft SC resistance 𝑅𝑠𝑐 =
60 Ω  in parallel to PV’s string. The fault is intermittently 

activated at each surface (HG, LG, VLG), as depicted in 

Fig.11. the SC faults is ON from 𝑡 =  1 sec to 𝑡 = 3 sec at 

HG and from 𝑡 =  5 sec to 𝑡 =  7 sec at LG. Similarly, the 

soft SC is initiated at VLG from 𝑡 =  9 sec to 𝑡 = 11 sec and 

from 𝑡 =  12 sec to 𝑡 =  13 sec. Otherwise, the resistance is 

open circuited. As appreciated, the percentage relative size of 

SC varies according to irradiation levels. The SC relative size 

at HG represent around 3% of 𝐼𝑚𝑝𝑝, while at LG is less than 

20%, and at VLG represents 50%. Remarkably, each time the 

faults is activated into the PV system the threshold gets 

violated, as described in Fig. 12. The diagnosis indicator 

𝑉𝑟𝑒𝑓,𝑑𝑖𝑎𝑔  exceeds the upper threshold. Accordingly, as 

depicted in Fig. 13 a fault alarm is triggered simultaneously, 

indicating the presence of soft SC with a short mean time to 

detection delay of 0.14 sec. Therefore, the FDD scheme is 

able to detect soft SC at harsh operating conditions with short 

mean time to detection delay.  

In comparison to the two-step methodology in [11] which 

is restricted to unhealthy power dissipation higher than 5%, 

the FDD scheme is able to detect very soft short circuit 

(𝑅𝑠𝑐 = 60 Ω) at only 3.5% unhealthy power dissipation. 

V. CONCLUSION 

 This paper presents a novel FDD scheme to detect soft 

short circuit in PV systems even at low irradiation levels. The 

FDD method is formulated on MPR method integrated into 

KF algorithm for stochastic estimation under noisy 

measurements. The MPR approach is derived from the 

relationship between voltage, current and temperature under 

global MPP, without irradiation sensor. In addition, an 

adaptive threshold based on quadratic polynomial degree in 

the state of temperature variable is settled to precisely 

distinguish between faulty and healthy state. The 

effectiveness of the proposed FDD scheme is verified by 

diagnosis results under MATLAB/Simulink®. The FDD 

scheme can effectively detect intermittent soft SC at an early 

stage, with a short mean time to detection delay 0.14 sec. 

As a future perspective, it is interesting to investigate the 

robustness of the proposed method against other type of 

faults, as well integrate fault estimation and isolation to 

enable the MG’s controller to take the appropriate 

countermeasure action.  
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