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Abstract—This paper presents a novel approach to detecting
equipment failures in modern power systems by leveraging
machine learning techniques applied to thermography inspection
data. Particularly segmentation and pixel processing to improve
accurateness is highlighted in the methodology. The proposed
method is capable of identifying early warning signs of equipment
failure and predicting when the failure is likely to occur. The
proposed approach demonstrates the potential for early detection
of equipment failure in modern power systems with accurate
clustering. The use of machine learning algorithms applied to
thermography inspection data provides a reliable and effective
way to identify and predict equipment failures, ultimately leading
to improved system reliability and reduced maintenance costs.

Index Terms—Thermography inspection, image segmentation,
predictive fault identification, machine learning, neural network.

I. INTRODUCTION

As power systems become increasingly complex, the reli-
able and efficient operation of smart equipment has become
critical for ensuring continuous power supply [1]. The failure
of critical components in such equipment can have severe
consequences, including power outages, safety hazards, and
significant financial losses. To mitigate these risks, the use of
machine learning techniques for equipment failure detection
has gained traction in recent years [2], [3]. In particular,
thermography inspection data provide valuable insights into
the operating conditions of smart equipment [4], which can
be leveraged to develop accurate predictive models.

Predictive maintenance is an essential part of keeping the
efficiency and reliability of power equipment, and machine
learning has emerged as a powerful tool for this task. In
particular, machine learning with thermography images has
shown promise for detecting potential equipment failures
before they occur [5]. Thermography is a non-destructive and
non-intrusive testing technique that measures the temperature
of an object using infrared radiation. By analyzing thermogra-
phy images of power equipment, machine learning algorithms
can detect patterns and anomalies that may indicate potential
equipment failures.

Some studies propose deep learning approaches for detect-
ing and diagnosing faults, for example in photovoltaic systems
using thermographic images [6]. In [7] a two-stage approach,

where the first stage involves identifying potential faults using
a convolutional neural network (CNN), and the second stage
involves diagnosing faults using a residual neural network
(ResNet).

In [8] there is the introduction to a new dataset for fault
diagnosis in electrical equipment using thermal imaging. The
study integrates an interpretable machine learning approach
that combines decision trees with feature selection and feature
importance ranking methods to diagnose faults in electrical
equipment.

The review presented in [9] compiles the studies where
infrared thermography is used for energy audits of buildings.
In most of the reviewed references, experimental results show
that the proposed approaches achieves high accuracy in detect-
ing and diagnosing faults. In overall, these studies demonstrate
the potential of using thermal imaging and deep learning for
fault diagnosis in photovoltaic systems [10] and energy audits
in residential or commercial buildings.

Machine learning can be a powerful tool for predictive
maintenance in power equipment when combined with ther-
mography images. To use machine learning for predictive
maintenance with thermography images, a dataset of thermog-
raphy images must be first collected and labeled according to
the condition of the equipment at the time the image was
taken. The images must then be preprocessed to remove noise
and ensure consistency. Next, a machine learning model can be
trained on the preprocessed data using a variety of algorithms,
such as support vector machines, random forests, or neural
networks. The choice of algorithm will depend on the specific
requirements of the application. Once the model has been
trained, it can be used to predict the condition of the equipment
based on new thermography images. This allows for timely
maintenance to be performed before equipment failure occurs,
thereby reducing downtime and maintenance costs.

In this paper, we present a novel approach to equipment
failure detection using machine learning applied to thermog-
raphy inspection data. We demonstrate the effectiveness of
our approach through a case study on a modern power
system, highlighting the potential for improved reliability
and reduced downtime in smart equipment operations. This
paper is organized as follows: section II defines the Types
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of Thermographic Inspections in power systems. In section
III, a detailed description of the proposed methodology is
presented. It comprises three main stages: data acquisition,
feature extraction, and machine learning-based classification.
The data acquisition stage involves capturing thermal images
of equipment under inspection, which are then processed to
extract relevant features. These features are then fed into a
machine learning algorithm, which classifies given the temper-
ature of normal or abnormal thresholds. Then, the algorithm’s
testing and the findings achieved in the case study is presented
in section IV. Some conclusions and perspectives are given in
section V.

II. TYPES OF THERMOGRAPHIC INSPECTION OF POWER
SYSTEMS

When carrying out a literaturel review of the monitoring
of power systems with IR images, it is possible to notice
that there are two types of images: images obtained in closed
spaces and images obtained in open spaces. Such classification
is proposed on our approach (see Fig. 1) to objectively cate-
gorized the methods depending on the physical environment
of the power system equipment.

Those located in open spaces typically monitor solar panels
and photovoltaic cells, or electrical transmission lines. The
images are taken either by locating the camera in drones, or
in a high or distant fixed point.

Two points must be considered in the preprocessing of these
images: The first is the distinction of the background from
the system or equipment to be monitored. Unlike the images
that are taken in closed spaces, it must be considered that in
this case the light and the temperature of the environment are
variable and impossible to control. Thermal imaging cameras
are sensitive to these factors which can make segmentation
more difficult. On the other hand, the perspective in which
the images have been taken is also an important point in their
preprocessing.

The second point of the preprocessing is the distinction
of the parts or regions of interest for monitoring once the
background has been separated: In the case of solar panels,
it is convenient to obtain information from each photovoltaic
cell separately, for example, and this requires additional work.

On the other hand, monitoring in closed spaces is typically
carried out under constant ambient temperature and lighting
conditions, which allows a better generalization to be made
to distinguish the object from the background. Under this
condition, simple systems, such as a single motor or trans-
former, or complex compound systems that include multiple
machines can be monitored. In the second case, in addition to
distinguishing the region of interest from the background, it is
necessary to identify the different parts of the image to obtain
a localized and accurate prediction.

Fig. 1. Types of thermographic inspection of power systems

III. METHODOLOGY

For the identification of failures, the same process is carried
out both in monitoring in open spaces and in closed spaces.
As illustrated in Fig. 2 The first step is to obtain images of
the equipment to be inspected using an Infrared (IR) camera
at the appropriate distance and angle.

The second step is the pre-processing of the image data,
which allows obtaining information from the images and being
able to introduce them into a segmentation or ML algorithm.
This preprocessing includes converting the image files to a
format that allows working with the image pixel by pixel; a
vectorization of the image to be able to introduce it into the
algorithms, then the selection of the appropriate color space;
the use of filters, morphological changes or contrast depending
on the case.

Next, the identification of the Region of Interest (RoI) is
done. This segmentation can be done by hand by an expert,
which is convenient in cases where neither the camera nor the
power system has position changes; or it can be automated,
and this automation can be a more or less precise segmentation
according to the needs. This process is crucial because it
has a direct impact on the performance of the next step:
classification or identification of the failure.

This last point is based on the implementation of an ML
algorithm, supervised, unsupervised, or by reinforcement, on
the region of interest, which incidentally identifies if the
system has a fault, and if so, identifies the type of fault.

Fig. 2. Steps for automated detection of faults in power systems using IR
images
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Fig. 3. Maximum Pixel Value (Transformer)

IV. CASE STUDY DESCRIPTION: CLOSED SPACE, SINGLE
SYSTEM

In this paper, the procedure carried out in [8] is analyzed,
implemented, and modified, using the dataset created for
that case study. The dataset consists of 624 thermal images
of 320x240 pixels, of which 369 correspond to images of
induction motors and 255 to images of transformers. The
images were taken by a Dali-tech T4/T8 infrared thermal
image camera at 23° Celsius of environment temperature.

Regarding the transformer, 8 cases of short circuit failures
in common core winding are taken into account to generate
the defects artificially; while 8 different cases of artificial
generated stuck rotor fault, cooling fan failure and stator
windings failure are considered.

The objective of both the investigation carried out by the
researchers and by the present manuscript is to find the best
way to distinguish and classify the failures described above.

A. Data Preprocess

The first step on this path is the pre-processing of the data.
The images are converted to grayscale, a projection of RGB
space in which each pixel takes a single value from 0 to 255,
instead of taking 3 different component values. The advantage
of working in grayscale is that this dimensionality reduction
decreases the time and computational cost of the algorithms.
Regarding the temperature, this is directly proportional to
the pixel value. However, it should be considered that this
reduction could lead to loss of information.

[8] proposes to classify ”cold” and ”hot” images before
segmenting the region of interest and the same will be done
here. To carry out the classification, the data was divided into
training and test sets, the pixels with the highest value from
each of the images were extracted, and the behavior of these
values in the training set was explored.

In Fig. 3 it is noticeable that there is a clear difference
between the maximum value of the cold images and the
hot images. Similar results are obtained for the motor. To
perform a classification, use intermediate values (mean or
median) to generate a classification threshold, establish a
threshold through observation, or use a support vector machine
classification that finds a hyperplane (or line) that conditions
the classification.

The results obtained when using linear SVM are a perfect
classification for both cases (which is not surprising since
the classes are quite distant). However, from the plot of the
train data, it is evident that the data is grouped in more than
two subgroups focusing only on the maximum value pixel. In
this sense, additional exploration of the dataset is done with
KMeans, trying to distinguish those subgroups and the number
of clusters is determined through the elbow method. For both
the transformer and the motor the optimal number of clusters
is 5; 3 clusters for cold images and 2 clusters for hot images
as shown inf Fig. 4.

Fig. 4. K means

By comparing the results obtained above with the failure
that corresponds to each value, it is noticeable that the images
that have the same fault label often are located in the same
cluster. It can be inferred that the maximum value pixel is a
good guide not only to create an effective preprocessing that
facilitates the segmentation of the region of interest but also
to approximate the final classification.

B. Identifying RoI (Region of Interest)

From the previously identified clusters, an image is chosen
at random from each of the previous groups to create a manual
mask of the region of interest, which will allow evaluation of
the results obtained by the automation.

The segmentation challenge, in this case, is that the images
were taken at different angles, on a surface that reflects
the light emitted by the equipment, and that includes cables
external to the equipment that should be included in the RoI
since they provide information about the state of the phases.

In this sense, the algorithm to find the RoI follows the
following steps:
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C. Initial segmentation setting a threshold:
Segmentation of an image in two regions can be done by

setting a threshold k such that if a pixel has a value that is
greater than k it belongs to a class and if not, it belongs
to the other. The threshold can be defined manually or by
numerical methods by identifying inflection, local maximum,
or minimum points in the histogram of the distribution of pixel
intensity.

However, it is a nonoptimum procedure on a large scale.
Then, a threshold function f(x, y) must be defined such that
if a pixel with coordinates (x, y) evaluated in f has a value
greater than k belongs to one region R1, and if the value is less
or equal to k it belongs to the other region R2. This procedure
can be summarized by the following function:

g(x, y) =

 1 if f(x, y) > k

0 if f(x, y) ≤ k
(1)

The problem now consists of finding the most optimal and
general function f and the threshold k. As explained in [11],
it has been sought to use a PDF probability density function,
but the limitation is that the calculation of functions requires
many distribution assumptions that are not always fulfilled and
cannot be easily calculated for atypical distributions.

A solution to this problem exposed by the same source
[11], is OTSU’s method. It is an optimum procedure where
f maximizes the variance between classes, basically car-
rying out a statistical method of discriminant analysis on
the intensity of the pixels. An advantage of the OTSU’s
method highlighted by the authors is that its results are
obtained from the histogram giving, as a result, an array
of dimension 1. Access the complete process and the spec-
ifications of the OTSU formulas in the following reposi-
tory: https://github.com/anamarigarzon/IR-Image-Analysis-in-
Power-Systems

In this project, the cluster to which the image belongs
is considered. Similar and satisfactory results are usually
obtained for hot images by applying OTSU directly. For
cold images, a histogram equalization procedure is performed,
which standardizes the image values, some morphological
erosion transformations and finally OTSU is applied.

There are multiple ways of finding this threshold function,
which vary depending on the image distribution. A useful
and simple but very manual way to establish it is to plot the
histogram of the distribution of the pixel values in the image
and determine possible segmentation points.

D. Shadow elimination and addition of the missing equip-
ment area:

Next, a new OTSU segmentation is performed on the portion
of the image that is outside the mask obtained in the previous
step. In the images of the two clusters with a smaller maximum
pixel value, the problem is that the equipment section has
a temperature very close to that of the background, so it
is advisable to perform morphological operations and extra
contrast enhancement to increase differentiation.

Fig. 5. Example of Initial OTSU segmentation

In hot images, the shadow reflected by the surface has an
intensity that is close to the missing section of the image. So,
in this case, the procedure to follow consists of performing
an erosion of n iterations according to the image cluster, until
these sections separate, and it is chosen to keep the section
with the largest area. Finally, the section is dilated n times and
added to the previous segmentation.

Fig. 6. Example of second RoI segmentation and shadow elimination

E. Cable segmentation:
The segmentation after the shadow elimination ignores key

elements due to their lower contrast with respect to the back-
ground, and those are the cables. It is important to consider
the cables in the segmentation because they provide important
information about the status of the phases.

To identify them, the image is divided into regions in such
a way that for the largest number of images the cables are in
the same square region, and once this division is made, the
Canny Edge Detector is used on those areas to find the cables.

Canny edge detection is a popular edge detection algorithm
developed by John F. Canny that first removes noise using a
5x5 Gaussian filter.

As it is described in the OpenCV python library documen-
tation [12] It then finds the intensity gradient of the image
using a sobel kernel on both the X and Y axes. Then the first
derivative is obtained in the horizontal and vertical direction.

Then follows the Non-maximum Suppression stage, in
which all the pixels of the image are scanned and those that do
not constitute the edges are removed. For this, it is checked
if each pixel is a local maximum in its surroundings in the
direction of the gradient. If it is a maximum, it is considered
for the next stage, if not, its value changes to zero.
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Fig. 7. Example of comparison between the original image, the mask
generated by the algorithm and the manual mask

The final stage is the Hysteresis Thresholding stage, which
defines which edges are truly edges and which are not. Two
values are needed for this stage, a minimum and all pixels
below that minimum are discarded, and a maximum and all
pixels above that maximum are considered safe edges. Those
that are between both values are classified as edges or non-
edges based on their connectivity with neighboring pixels.

The precision of the masks generated by the previous pro-
cess are measured with the Jaccard Score. This index compairs
the similarity between the manual masks and its respective
automated masks. The Basic Jaccard Index according to L.
Fontura Costa [13] can simply be expresed as:

J (A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B|+ |A ∩B|
(2)

Where A, and B are two sets. In this context, |A∩B| is the
number of pixels of the image that have the same intensity,
and |A ∪ B| is the size of the image. The results obtained
for the 10 compared masks (one for each of the clusters) are
between 0.73 and 0.81 for cold images and between 0.87 and
0.94 for hot images.

F. Classification

The methods proposed in the paper of the database have
been explored considering the entire image once the pixels that
are not part of the mask have been equaled to zero. However,
the procedure has to be modified since the masks have different
shapes and locations.

Taking this fact into account, it is key to find a way to
vectorize and equalize the dimensionality of the arrays of
regions of interest to implement the algorithms. The initial
proposal to work on is to divide the images into regions
according to the parts of the power system, and obtain gen-
eral characteristics (mean, variance, minimum and maximum
values, range, inertia, among others) and vectorize them to
introduce them into supervised machine learning algorithms,
especially tree-based ensemble classifiers.

V. CONCLUSIONS AND FURTHER WORK

Work is currently underway to generalize the above proce-
dure for multi-system cases in closed spaces and equipment
failure monitoring located in open spaces. It is expected that
in the near future results will be obtained for these other
two types of monitoring, in such a way that the processes
carried out for each of the cases can be compared, and thus
establish algorithm guidelines for monitoring power systems
with infrared images.
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