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Abstract— Wind turbines condition monitoring and fault 
warning have significant importance in terms of reducing 
maintenance costs and improving operation levels of wind farms. 
Since high-speed shaft bearings account for a major share of wind 
turbine drivetrain failures particularly offshore ones, there is an 
urgent need to monitor the health status of wind turbine elements 
accurately. In this paper, Spectral Kurtosis (SK) data driven 
approach is utilized to provide a vibration-based prognostic and 
health monitoring methodology for wind turbine high-speed shaft 
bearing. Three data-driven machine learning models are applied: 
Support Vector Machine (SVM), Convolutional Neural Network 
(CNN), and Random Forest (RF) to detect and classify remaining 
useful time in bearing through vibration condition monitoring. 
The results of the study carried out in this paper using actual wind 
turbine vibration dataset reveal that the CNN approach surpasses 
SVM and RF techniques in achieving higher accuracy and better 
classification performance. 
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I. INTRODUCTION  
Wind energy provides a clean, environmentally friendly, and 

widely accessible power source. As appropriate locations 
for onshore wind farms become increasingly scarce, offshore 
wind farms have attracted considerable attention. Offshore wind 
farms can generate higher power, can be constructed in larger 
units that are easier to ship and deploy and are often built in 
larger spaces and permissible heights [1]. However, the cost of 
maintaining offshore wind turbines to ensure that they work 
optimally over their lifetime usually costs around 25% of the 
offshore installation [2] 

Rolling element bearings are a key element that is utilized in 
a wide variety of applications in wind turbines which are subject 
to tremendous pressure at contact [3]. As the bearing rotates, 
Hertz contact stresses are generated in the bearing components 
due to cyclic loading at material contact points. This causes 
material fatigue and gradually reduces the machine’s 
performance and availability. Since the wind turbine rotor and 
the gearbox shafts are all supported by bearings, bearing is thus 
a critical component of the mechanical system and its failure can 
either cause machine stalls or permanent damage. Typically, 

bearing failures account for more than 40% of the total wind 
turbine generator failures, resulting in unanticipated energy 
losses [4]–[6]. 

Since wind turbines work in a very challenging environment, 
condition monitoring techniques are urgently required to 
anticipate equipment condition by collecting data at regular 
intervals to reduce machine downtime and reduce maintenance 
costs. Therefore, prior knowledge of failing components will be 
useful for equipment stocking and scheduled maintenance. 
Numerous signals are acquired utilizing appropriate sensors for 
wind turbine condition monitoring such as vibration, acoustic 
emission, strain, torque, temperature, and electrical signals [7]. 
Commonly, bearing defects are diagnosed using vibration-based 
techniques, which necessitates a thorough understanding of the 
vibration signatures of bearings with flaws to successful failure 
detection. Typically, vibration signal analysis is carried out in 
time, frequency, and time-frequency based domains.  

Regarding fault diagnosis, three methodologies exist which 
can be divided into: a) Modeling Based methods, b) Statistical-
based approaches, and c) Data driven approaches [8]. Physical 
and modeling-based methods require a good understanding of 
the structure of the WT, but is hardly achievable with nonlinear 
systems. Statistical approaches are sensitive to the number of 
samples which may reduce their accuracy, especially with high 
dimensional data. Data driven approaches, on the other hand, 
map the relationship between inputs and outputs of the 
diagnostic model to characterize the fault, thus fault diagnosis 
accuracy is improved [9]. 

In recent years, Deep Learning (DL) algorithms for 
diagnostic purposes have been developed. Rather than artificial 
feature extraction with typical machine learning techniques, DL 
can automatically learn fault features from acquired data and is 
capable of extracting detailed features and patterns from the 
training dataset [4]. Hence, they attempt to provide end-to-end 
diagnostic models with high accuracy when handling the 
increasingly grown data due to their flexibility and self-
organization [10]. CNN is among the most prominent DL 
networks, compared to machine learning techniques, CNN can 
automatically detect significant features, which is ideal in fault 
detection and diagnosis. 
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This paper’s primary objective is therefore to investigate 
wind turbine high speed shaft bearing degradation during run-
to-failure testing utilizing a SK -based feature extraction system. 
Based on the computation of a kurtosis spectrogram, the 
acquired samples are classified into two classes: short and 
medium life expectancy, thus reflecting the bearing condition 
and need for maintenance or replacement. Three distinct 
machine learning classifiers are tested and compared among 
which the classifier attaining the highest accuracy and 
performance is highlighted.   

II. DATA DRIVEN BEARNING FAULT DIAGNOSIS  
Wind energy is currently recognized as one of the most 

rapidly expanding renewable energy sources. However, the 
wind industries continue to experience difficulties due to their 
premature failure of components, which has a direct impact on 
their operation [11]. Wind turbine components can either be 
monitored by offline or online tools that rely on sensors to record 
data continuously [12]. However, the large amount of collected 
data has paved the way to use data driven approaches using 
machine learning and DL techniques for fault classification and 
prognosis. 

Regarding machine learning algorithms, extensive literature 
exist. Authors of [13] employed SVM to anticipate wind turbine 
bearing failures and the remaining service life by analyzing 
high-frequency vibration data, however, low prediction 
accuracy has been reported. The work in [14] classified and 
diagnosed various types of bearing faults using an SVM 
classifier which has been trained using frequency domain 
features derived from a fast Fourier transform. Acoustic 
emission signals were used in [15] where time, frequency, and 
spectral characteristics of the faulty signal where classified using 
different learning models. In [16], a condition-based monitoring 
strategy based on SVM algorithm was adopted to optimize the 
maintenance arrangement of offshore wind turbines by studying 
the correlation between components. In [17] a feature vector was 
provided to an RF classifier for fault diagnosis using variational 
mode decomposition. The experimental findings demonstrated 
that the proposed approach achieved higher accuracy compared 
to the conventional SVM, genetic algorithm based SVM, and 
particle swarm based SVM with less time. 

Deep learning approaches have recently gained researchers’ 
attention, particularly for the purpose of overcoming limitations 
of conventional machine learning ones. Limitations such as 
sensitivity to outliers in the data being processed, solving multi-
classification problems, processing a large number of samples, 
and overfitting due to noise, are commonly associated with 
vibration signals acquired from wind turbine data. CNN and DL 
are therefore ideal to overcome the aforementioned problems. 
Authors in  [18] can directly input vibration signal, extract 
features through the CNN, and identify vibration signal thus 
avoids the subjectivity of feature extraction process. In [19], a 
CNN with 4 convolution-pooling layer pairs are employed and 
the raw data are transformed into spectrograms. Results showed 
high accuracy and outperforming those of the linear SVM with 
particle swarm optimization, and the conventional SVM. The 
work in [20], [21] both presented an acoustic emission-based 
bearing fault diagnosis system. The work in [20] trained a CNN 
to classify the bearing acoustic emission signal as normal or 

faulty, yet with some limitations with low frequency features. In 
[21], authors have addressed the problems associated with 
vibration signals in low-speed rolling bearings faut 
identification and using and subspace embedded feature 
distribution alignment along with acoustic signals. A neural 
network approach for bearing fault diagnosis with continuous 
temperature monitoring was proposed in [22] where the model 
is previously trained during normal operation of the wind turbine 
to estimate the expected temperature values of turbine critical 
components under various conditions. The work in [23] 
developed a CNN based methodology with variational mode 
decomposition algorithms that can directly interpret raw 
vibration signals, taking into account environmental noise and 
variable loading. Wind turbine high speed bearing prognosis 
was carried out by authors in  [24], [25] for the same dataset 
using SK. Authors in [24] used exponential degradation model 
for remaining useful life estimation, while the work in [25] used 
a one-dimensional CNN for fault classification. 

Based on the literature work, various signals have been 
utilized to determine the fault and life expectancy of rolling 
bearings in wind turbines such as vibration, acoustic and 
temperature signals. Due to their high capabilities in detecting 
incipient faults with less complex signal processing, vibration 
monitoring is well suited for wind turbine bearing condition 
monitoring systems. On the other hand, vibration signal analysis 
in time domain might not be a viable option especially in early-
stage detection, and for this reason, time-frequency analysis is 
more preferrable. For higher degree of accuracy, DL algorithms 
show higher classification accuracy compared to machine 
learning models in various literature. Compared to other work 
using the same dataset, the work of [24] used a fit exponential 
degradation model which requires complex analysis and prior 
knowledge for fault prediction. On the other hand, the work in 
[25] only studied the use of a single classifier with possible 
enhancement in results.  

III. FEATURE EXTRACTION & SPECTRAL KURTOSIS 
Wind turbines are complex and have flexible operating 

conditions. Thus, feature extraction stage is used to compress 
high-dimensional time series (such as sensor signals) by keeping 
their main characteristics intact while discarding noise and 
removing correlations [2].This should speed up model training 
and produce better outcomes than when applied to the original, 
raw data.  

Feature extraction/signal processing stages can be divided 
into time, frequency, and time-frequency domain analysis [26]. 
The time domain analysis involves extraction of statistical 
features such as peak, root-mean square (RMS), crest factor, and 
kurtosis for fault diagnosis. The frequency domain analysis 
utilizes fast Fourier transform (FFT), envelope analysis, and 
spectrum analysis, whereas time-frequency domain analysis can 
be divided into WT, Hilbert–Huang transform (HHT), Wigner–
Ville distribution (WVD) and Short-Time Fourier Transform 
(STFT).  

Spectral kurtosis (SK) is a statistical metric that indicates 
frequency dependance of signal’s impulsivity. As faults in 
bearings give rise to a series of short impulse as the rolling 
elements strike faults on the races, the spectral kurtosis may be 
useful when determining the frequency bands dominated by the 
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bearing fault signals, which typically contains resonance due to 
faults. STFT can be used to define SK in a 3-D diagram with 
time and frequency, allowing it to be used as a filter to select out 
the most impulsive portion of a signal, and significantly 
reducing noise and enhancing the diagnostic abilities [27]. 

IV. PROPOSED FRAMEWORK 
The framework proposed in this work can be found in 

flowchart of Fig. 1 and is based on the run to failure data of high-
speed wind turbine bearing. This paper compares the 
performance of three machine learning based classifiers that 
classify each sample into two classes: a) Short lifetime Class 
(faulty condition) and, b) Medium Lifetime Class (normal 
condition). The former represents bearing life expectancy less 
than 15 days while the latter represents more than 15 days of life 
expectancy. Fault features are extracted from the given dataset 
in both time and time- frequency domain, with nine signal-based 
statistical features extracted in the time domain. Furthermore, 
kurtosis spectrogram is computed using STFT to convert the 
sinusoidal time-domain signal to non-cyclic frequency domain 
in order to differentiate between the fault classes. Classifiers 
compared in the work are CNN, SVM and RF.  

A. Dataset and Acquisition: 
The dataset used in this analysis if for a 2MW high-speed 

shaft driven wind turbine which can be found in [24], [25] which 
is driven by a pinion gear. The bearing is a component of 
the gearbox that is responsible for coupling the electrical 
generator with the rotor. The vibration signal acquired was 
recorded daily for a duration of 50 days at scan frequency of 
97656 Hz, and the recording period is carried out every 6 
seconds. Over the course of the 50 days, a defect in the inner 
race fault led to the bearing’s failure. 

B. Data Preprocessing & Inspection 
 The total number of collected and recorded data entries is 

29,286,800, which is complex to process. Initially, data is 
preprocessed by removing duplicated and unnecessary entries 
and zero records. In addition, date information versus vibration 
data is generated. The 50-day vibration signal is plotted in time- 
frequency domains for further exploration and visualization. 
STFT is applied to plot the vibration signal spectrogram.  

C. Feature Extraction 
In this step, a collection of statistical features derived from 

time-domain signal and spectral kurtosis are to be extracted. 
Time domain features include, date, mean, standard deviation 
(STD), peak to peak (P2P), root mean square (RMS), crest factor 
(CF), shape factor (SF) and impulse factor (IF). These feature 
are necessary in quantifying the impulsiveness of the signal. 
Besides the time domain features, SK is considered powerful 
tool for wind turbine prognosis in frequency domain. Statistical 
features of the spectral kurtosis, such as mean, standard 
deviation, skewness (Skp) and kurtosis (K) are also being 
extracted to create feature table.  

D. Bearing fault diagnosis using CNN & ML 
This step entails evaluating and comparing several ML 

classifiers to evaluate their diagnostic capability when 
implemented in the classification stage. This involves CNN, 
SVM and RF classifiers to distinguish between normal and 

faulty bearing condition, After Kurtosis is computed using 
STFT, samples are classified as either a) Short lifetime Class 
(faulty condition) and, b) Medium Lifetime Class (normal 
condition). Each class represents the bearing life expectancy. 
The three constructed models are tested over 20% of the 
samples, yet preserving the amount of records per sample such 
that the dataset is divided into a training set (80% of the data) 
and a testing set (20% of the data). For the CNN model training, 
batch size is 32 with 30 training epochs and loss function of 
cross entropy is selected. To lower computation burden, Adam 
optimizer is used for parameter tuning.  

E. Performance Evaluation: 
The effectiveness of the three different ML classifiers has 

been verified using numeric simulations based on an actual wind 
turbine dataset. A set of statistical indices have been utilized in 
this work to assess the diagnostic accuracy and to 
comprehensively compare the performance of each of the three 
ML techniques employed. These indices include accuracy, 
sensitivity, precision, specificity, and F1-score which can be 
computed using the following (3-5): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

     (1) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

      (2) 

𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  (3) 

𝑃𝑃𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

     (4) 

𝐹𝐹1 − 𝑆𝑆𝐴𝐴𝑃𝑃𝐴𝐴𝑆𝑆 = 2×𝑇𝑇𝑇𝑇
2×𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

     (5) 
where, TP, TN, FP, and FN are identified as the true 

classified positive and negative predictions and the false 
classified positive and negative predictions. 

V.EXPERIMENTAL RESULTS & VALIDATION 
To validate the effectiveness of the proposed framework in 

detecting bearing faults at an early stage, the proposed 
framework is evaluated using actual vibration signal obtained 
from a commercial 2 MW, high speed wind turbine. Several The 
suggested model was constructed using Python packages, 
including Keras, and native TensorFlow. 

As mentioned earlier, vibration signals have been collected 
for 50 days and analyzed in both time and frequency domain in 
order to visualize and extract required features that will be 
helpful in building successful fault diagnosis. Fig. 2 shows a plot 
of the vibration signal in time domain. It can be noted that time 
domain spectrum demonstrate an increasing trend of the signal’s 
impulsiveness, which can be observed in the amplitude variation 
of the acceleration signal. Accordingly, time domain features are 
extracted, including date, mean, standard deviation, P2P, RMS, 
CF, SF and IF and are tabulated in table 1. For a more insightful 
analysis, the vibration signal is further analyzed in the frequency 
domain where SK is applied using STFT. To visualize the 
spectral kurtosis changes along time, a plot of SK values as a 
function of frequency and the measurement sample are 
presented in Fig. 3.  As the bearing state deteriorates, it is 
observed that the SK value near 10kHz rises.  Statistical features 
of the SK, such as mean, STD, Skp and K are calculated 
accordingly and updated in Table 1 which shows a sample of 5 
entries.  



Data Acquisition & 
Preprocessing

Feature 
Extraction Classification
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Fig. 3. Kurtosis Spectrogram 

TABLE.1 EXTRACTED FEATURES 

Parameter 0 1 2 3 4 5 
Mean 0.346 0.244 0.218 0.213 0.215 0.293 
STD 2.270 2.062 2.103 2.008 2.060 2.079 
Skp 0.003 0.003 -0.001 0.001 0.001 -0.008 
K 2.995 3.019 3.022 3.041 3.044 3.017 

P2P 21.621 19.309 21.474 19.520 21.216 20.049 
RMS 0.003 0.002 0.002 0.002 0.002 0.002 
CF 3762.055 3760.6 3991.38 4046.27 3831.73 3671.60 
SF 0.008 0.011 0.012 0.012 0.012 0.009 
IF 32.618 41.794 50.417 49.947 48.194 34.332 

 

To further identify the classification results of the testing 
phase, the confusion matrix diagrams of the three ML models 
are presented in Fig. 4. The vertical axis indicates the actual 
sample label, while the horizontal axis represents the predicted 
label such that a zero value represents a medium lifetime class 
(normal condition), and 1 represents short lifetime class (faulty 
condition). The corresponding performance metrics are 
accordingly calculated in Table 2. 
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Fig. 4. Confusion Matrix a) CNN, b) RF, c) SVM  

As demonstrated in Table 2, the specificity and precision of 
the three ML classifiers are 100%. The CNN measurements 
attained 90% accuracy, 83.33% sensitivity and 90.9% F1-ccore. 
For RF, the performance metrics are 80%, 71.42% and 83.33% 
for accuracy, sensitivity and F1-score respectively, and those for 
the SVM classifier were 70%, 62.5% and 76.92%. Results of 
Table 2 demonstrate that CNN is superior to RF and SVM in 
predicting bearing fault and remaining useful life.   

Compared to the work of [24], [25] using the same dataset, 
in [24] authors have provided a statistical based exponential 
degradation model to predict the bearing remaining useful life, 
which might be non-deterministic as it depends on set of 
statistical assumptions [28]. On the other hand, the calculated 
accuracy, sensitivity and F1-score in [25] are 84%,76%, and 
87% respectively, compared to the proposed work of 90%, 
83.33% and 90.9% respectively. This demonstrates the 
superiority of the proposed methodology in achieving better 
performance results when compared to counterpart.  

TABLE. 2 PERFORMANCE METRICS 

 Accuracy Sensitivity Specificity Precision F1-Score 

CNN 90% 83.33% 100% 100% 90.9% 

RF 80% 71.42% 100% 100% 83.33% 

SVM 70% 62.5% 100% 100% 76.92% 



VI.CONCLUSION 
Rolling bearings are one of the most commonly utilized 

rotating parts in mechanical equipment and also the most prone 
to damage and failure. This paper investigates the framework for 
intelligent fault diagnostic SK-derived features-based approach 
to extract the bearing vibration characteristics from raw 
vibration signal, which can address the problem of high 
probability of mechanical bearing defects in wind turbines. 
Comparative studies utilizing various ML techniques were 
carried out to classify the bearing’s remaining useful life into 
two categorial classes: short and medium life expectancy. 
Results for remaining useful life estimation based on CNN show 
superiority compared to SVM and RF. 
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