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Abstract—Smart grids provide the energy distribution with
empowered capabilities thanks to the technological resources of
information systems. However, this also poses security threats
related to cyberattacks that are difficult to characterize. In this
paper, we propose a novel game-theoretic model for 2 prosumers
of a smart grid, acting as players that can both attack and defend
themselves, and one consumer which is assumed to be passive. We
analyze this problem by framing it as a static game of complete
information and providing theoretical and numerical discussions
of the Nash equilibria solutions. The obtained results may serve as
guidelines to understand the performance of smart grid systems
and handle reliability issues.

Index Terms—Cyberattacks; Game theory; Energy harvesting;
Energy trading; Smart grids.

I. INTRODUCTION

Smart grids enable two-way communication and data ex-
change between power generators, consumers, and grid opera-
tors so as to improve the efficiency, reliability, and sustainability
of electricity generation, distribution, and consumption [1], [2].
They are a special instance of a network system, where nodes
are the energy consumers, requiring energy and being supported
by a high-developed communication and control system, and
some special nodes, called prosumers, are entities capable to
utilize but also generate energy, e.g., through solar cells or
other forms of energy harvesting [3]–[5].

Due to their high reliance on cybercomponents, smart grids
are also vulnerable to cyberattacks from both external actors and
internal participants. A particularly malicious type of attack
as an example is false data injection (FDI), during which
adversaries sabotage the communication through data alteration,
resulting in bad choices of the network possibly leading to a
global collapse [6]. FDIs are often assumed to be committed
by an outside attacker [7]–[10], but inner nodes of the grid
may use them to damage neighboring competitors and take
their place [11]. In this paper, we focus on the latter case.

This problem was studied via several methodologies, such as
bi-level (attackers and defenders) models that allow sequential
and security-constrained economic dispatch [12]. These models
work under the strong assumption of complete knowledge for
players, which is not generally valid in real-life scenarios [13]–
[15]. Moreover, they consider the problem only from the
attacker’s perspective.

Another set of investigations handles the case of incomplete
information, such as Q-learning that has been used to identify

the optimal strategy of attack [16], or attack region identifi-
cation for unknown topologies by adding lines with arbitrary
reactance values [15], and an adaptation of matrix theory to
case of incomplete information [17]. Such algorithms mainly
provide approximate solutions via heuristics.

Some more studies took the perspective of the defender,
and they examined its protection; however, identifying secure
measurements is often NP-hard [18]. Detection schemes have
adopted for example a joint transformation combined with
Kullback–Leibler distance [19] and short-term state forecasting
considering temporal correlation [20]. Artificial intelligence
approaches are also used, such as those based on deep
supervised learning [21], as well as reinforcement learning
through the SARSA algorithm [22]. These latter models are
evaluated assuming that decisions made by one of the two
parties (attackers, defenders) do not condition future decisions
of the other, which is reasonable only provided that security
is seen no longer be seen as a binary property, but rather as
a probabilistic measurement on the resilience and mitigation
of the system, which unfolds into a complex analysis [23].
Another proposed detection approach is a novel forecasting-
aided anomaly detection system that uses an CNN-LSTM
based sequence-to-sequence autoencoder to combat against FDI
attacks via a two-stage approach: forecasting and detection of
anomalies within the forecasting [24].

A deep learning architecture was also used in [25] to discover
the exact locations of data intrusions in real-time. A detection
method was developed for FDI attacks based on reinforcement
learning with attention. This makes it easier for the model to
focus on the state parameters that show whether an attack was
launched.

These approaches only take into account one side of the
decision process (either attackers or defenders) and did not
look at the totality of players in the environment. To study both
sides of cybersecurity attacks, we can think of implementing
a game theory rationale [26], [27]. In this spirit, multiple
re-interpretations of this same scenario can be framed as
static games, such as zero-sum games to identify defense and
attack measurements in electricity markets [7] or to optimize
the deployment of PMUs [28]. Also, it is possible to adopt
Stackelberg games [29] to decide which sensors to attack, in
the cases of 1 [30] up to n [31] different adversaries, or games
of incomplete information [32]. Finally, an interpretation of
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the problem as a bi-level multi-stage Bayesian game where
players use the game history to update the beliefs was adopted
to identify the total losses caused by all FDI attacks that target
a specific measurement [6].

The contribution of this paper is to analyze a model where
prosumers compete to provide service to a consumer. Each
of the prosumers is interested in selling its over-production
of energy to the consumer, and they may attack each other
with cyber-threats to gain this spot. The consumer will choose
the prosumer that can generates the most of energy and is
unscathed by the cyberattack. The prosumers decide whether
to attack each other and whether or not they are willing to
defend themselves. This is formalized as a strategic interaction,
i.e., a game, for which we derive equilibria and infer practical
conclusions, also through numerical practical evaluations.

The rest of this paper is organized as follows. Section II deals
with the game-theoretic model of our solution, and we derive
the pure Nash equilibria in II-A, its general strict dominance
relations in II-B and the mixed Nash equilibria in II-C. The
model is analyzed numerically in Section III, which leads to
the conclusions and future research directions in Sections IV.

II. GAME THEORETICAL MODEL

We consider a pair of prosumers denoted as 1 and 2. Their
action set is defined as Ai = N×{0, 1} 3 (Xi, di), where Xi

is the number of attacks launched by i and di is a binary flag
denoting the self-defense choice of i. In the general case of
n > 2, multiple entries of X are associated with various targets
of the attack. Further, we define the utilities associated with
each strategy. We assume that each player acts to maximize its
own (monetary) gain, for which we define a fixed price per unit
of power. Each of the players incurs (separate) expenditures for
enacting attacks or self-defense mechanisms. We assume that,
for player i, attack and defense have respective costs ai > 0
and bi > 0. Thus, the cost of the action chosen is

ci (Xi, di) = aiXi + bidi . (1)

We denote the generation of prosumer i as Eout
i , whereas

the consumer asks for an amount of power equal to Eask,
so that Eout

i ≥ Eask. If this condition is not satisfied, then
the prosumer cannot be selected by the consumer. All power
parameters are common knowledge, therefore, without loss of
generality, we assume that the prosumers are ordered w.r.t. Eout

i ,
that is, Eout

1 ≤ Eout
2 . Each attack may succeed and defense

may fail with probabilities p > 0 and q < 1, respectively:
when an attack is successful we say it to be effective. If an
effective attack is performed against an ineffectively-defended
prosumer, this prosumer will not be able to provide enough
power to the consumer, therefore it will not be selected. A
prosumer is ineffectively-defended if they do not choose to
defend themselves.

By considering expected utilities, we can write

u1
(
(X1, d1), (X2, d2)

)
= P[1 ∈ S]P[2 /∈ S]Eask − c1

u2
(
(X1, d1), (X2, d2)

)
= P[2 ∈ S]Eask − c2

(2)

One can see that player 2 has no incentive to attack player 1,
as its utility only decreases — any strategy with X2 6= 0 is
strongly dominated by the equivalent with X2 = 0; a similar
argument can be made regarding d1, where d1 = 0 strongly
dominates d1 = 1. We can further simplify (2) to

u′1 (X1, d2) =
(

1−
(
1− pqd2

)X1
)
Eask − a1X1 (3)

u′2 (X1, d2) =
(
1− pqd2

)X1
Eask − b2d2 (4)

A. Pure Nash equilibria

If Eask = 0 then both utilities are reduced to pure costs, and
the only pure Nash equilibrium is X∗1 = 0∧ d∗2 = 0; hence, in
the following Eask 6= 0, and we write ã = a1

Eask and b̃ = b2
Eask .

Note that ã can be interpreted as the maximum number of
attacks that can be made before becoming counterproductive.
The pure Nash equilibria are strategies X∗1 , d

∗
2 satisfying both

X∗1 = arg max
X1

u′1 (X1, d
∗
2) (5)

d∗2 = arg max
d2

u′2 (X∗1 , d2) (6)

Substituting (4) in (6) we have that

(1− pq)X
∗
1 − (1− p)X

∗
1 ≤ b̃ =⇒ d∗2 = 0

(1− pq)X
∗
1 − (1− p)X

∗
1 ≥ b̃ =⇒ d∗2 = 1

(7)

whereas for (5), we exploit (3) and solve the maximization by
relaxing the constraint X1 ∈ N, obtaining

X∗1 = arg max
x

(
1−

(
1− pqd

∗
2
)x − ãx) (8)

for x ∈ R. We then need to study the sign of

∆
(

1−
(
1− pqd

∗
2
)x − ãx) (9)

=
(
1−pqd

∗
2
)x−(1−pqd∗2)x+1− ã=

(
1−pqd

∗
2
)x
pqd

∗
2 −ã

with ∆ denoting the forward difference operator, that is,
(∆T )(x) = T (x+ 1)− T (x).

There are two extreme cases to consider: (i) q = 0 and
d∗2 = 1, giving perfect defense, i.e., prosumer 1 cannot make
an effective attack. In this case, the right hand side of (9)
is equal to −ã and therefore the optimal x is x = 0; but
b̃ > 0 = (1 − pq)0 − (1 − p)0 and therefore d∗2 = 1 cannot
be an equilibrium; and (ii) p = 1 and d∗2 = 0, that is the case
of perfect attack, in which prosumer 1’s attacks will always
be effective. Then, (9) is equal to [x = 0]− ã and has x = 0
if ã ≥ 1 and x = 1 if ã ≤ 1 as optimal values; the former
is always an equilibrium, whereas the latter is one only if
b̃ ≥ 1− q.

We can now assume 0 < pqd
∗
2 < 1. There is an inflection

point around

x =
ln
(
ã−1pqd

∗
2

)
ln
(
1− pqd∗2

)−1 (10)

and thus, for x 6= Z, X∗1 = max {dxe , 0}. For x < 0 the only
solution is 0, whereas for x ∈ N both x and x+1 are solutions.
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TABLE I
PURE NASH EQUILIBRIA. RELATIVE ATTACK COST ã, CONSUMER REQUIREMENT Eask , PROBABILITIES (p, q) OF (ATTACK SUCCESS, DEFENSE FAILURE).

d∗2 X∗1 x u′1 u′2 Condition on b̃ Other conditions
from (9) (relative utilities for players 1 and 2) (relative cost of defense)

0 0 0 0 Eask = 0 or p = 1 and ã ≥ 1

0 1 1− ã 0 b̃ ≥ 1− q Eask 6= 0, p = 1 and ã ≤ 1

0 max {dxe , 0}
ln ã

p

ln(1−p)
b̃ ≥ (1− pq)dxe − (1− p)dxe Eask 6= 0 and p < 1

1 max {dxe , 0}
ln ã

pq

ln(1−pq)
b̃ ≤ (1− pq)dxe − (1− p)dxe Eask 6= 0 and q > 0

0 x+ 1
ln ã

p

ln(1−p)
1− ã

(
x+ 1

p

)
1−p
p

ã b̃ ≥ (1− pq)x − (1− p)x Eask 6= 0, p < 1 and x ∈ N

1 x+ 1
ln ã

pq

ln(1−pq)
1− ã

(
x+ 1

pq

)
1−pq
pq

ã− b̃ b̃ ≤ (1− pq)x − (1− p)x Eask 6= 0, q > 0 and x ∈ N

In (7), p > 0 and pq > 0, (1− p)x and (1− pq)x are both
decreasing functions of x; as a result, substituting X∗1 we get

(1− pq)max{dxe,0} − (1− p)max{dxe,0}

= max
{

(1− pq)dxe − (1− p)dxe, 0
}
.

(11)

The following equivalences allow us to remove b̃ ≥ 0 and
b̃ ≤ 0, always true and false, respectively:

max{a, b} ≤ c ⇐⇒ a ≤ c ∧ b ≤ c
max{a, b} ≥ c ⇐⇒ a ≥ c ∨ b ≤ c

(12)

The result of these simplifications is shown in Table I, along
with better representations of u′1 and u′2 whenever available.

B. Strict dominance

Despite a countable infinity of actions being available to
prosumer 1, those not strongly dominated are finite in number.
The analysis to prove it is split as for the pure Nash equilibria.

If Eask = 0, (3) becomes −a1X1, (4) becomes −b2d2, then
X1 = 0 and d2 = 0 is a strictly dominant strategy. There are,
in other words, no strictly mixed Nash equilibria.

If Eask > 0 but q = 0 and p = 1, we have that X1 = 1
strictly dominates all X1 = x > 1 as the conditions for strict
dominance ultimately reduce to ã(x− 1) > 0. Furthermore, if
ã > 1, then X1 = 0 strictly dominates X1 = 1, whereas the
converse is impossible as it requires ã < 0.

If Eask > 0 and q = 0 but p < 1, (3) becomes(
1−

(
1− p[d2 = 0]

)X1
)
− ãX1 (13)

and X1 = x strictly dominates X1 = x+1 whenever

(1− p[d2 = 0])
x
< (1− p[d2 = 0])

x+1
+ ã (14)

which is always true for d2 = 1 whereas for d2 = 0 we get

x >
ln
(
ã−1p

)
ln(1− p)−1

(15)

and therefore the remaining choices for X1 are finite.
If Eask > 0 and q > 0 but p = 1, (3) becomes(

1− (1− qd2)X1

)
− ãX1 (16)

so that X1 = x strictly dominates X1 = x+ 1 whenever(
1− qd2

)x
<
(
1− qd2

)x+1
+ ã (17)

which is equal to x > 1 ∨ ã > 1 for d2 = 0, whereas for
d2 = 1 we get

x >
ln
(
ã−1q

)
ln(1− q)−1

. (18)

If Eask > 0 and p < 1, q > 0, we get that X1 = x strictly
dominates X1 = x+ 1 whenever

x >
ln
(
ã−1pqd2

)
ln (1− pqd2)

−1 (19)

with a computation similar to above. This analysis justifies the
intuition that it is not sensible to indefinitely attack, as the cost
will eventually exceed the (expected) gain. Also, whenever
ã > 1 then X1 = 0 strictly dominates all other choices for X1,
which forces d2 = 0, leaving this as the only joint strategy.

C. Mixed Nash equilibria

To find the mixed Nash equilibria, Eask > 0 and ã ≤ 1 are
assumed. We have that d2 = 1 never strictly dominates d2 = 0
since the condition for domination is

b̃ < inf
x

(
(1− pq)x − (1− p)x

)
(20)

that requires b̃ < 0 for the case x = 0. Yet, d2 = 0 can strictly
dominate d2 = 1 as in the 4 following cases from

b̃ > sup
x

(
(1− pq)x − (1− p)x

)
. (21)

1) The case p = 1 and q = 0: For the dominance condition,
(21) is in this case equivalent to b̃ > 1; this corresponds to one
or both of the first two pure Nash equilibria in Table I. When
b̃ ≤ 1, two cases follow. (i) ã = 1: in this case, X1 = 0 is
equivalent to X1 = 1 as far as payoffs are concerned; therefore
strategies of the form β 〈X1 = 0〉 + (1 − β) 〈X1 = 1〉 are a
Nash equilibrium when joined by d∗2 = 0 with the condition
that β ≥ 1 − b̃. Or (ii) ã < 1: there are two strategies for
each player none of which are dominated. Therefore, we can
compute a mixed Nash equilibrium by setting the strategy
of prosumer 1 to be α 〈d2 = 0〉 + (1 − α) 〈d2 = 1〉 and for
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prosumer 2, β 〈X1 = 0〉+(1−β) 〈X1 = 1〉. The equations for
the mixed equilibrium are satisfied for α = ã and β = 1− b̃.
Therefore, we have a mixed Nash equilibrium with

(1− b̃) 〈X∗1 = 0〉+ b̃ 〈X∗1 = 1〉
ã 〈d∗2 = 0〉+ (1− ã) 〈d∗2 = 1〉

(22)

and there are no other mixed Nash equilibria.
2) The case p < 1 and q = 0 (perfect defense): Firstly, (21)

is valid if and only if b̃ ≥ 1. When 1 − (1 − p)dxe ≤ b̃ < 1
there exists a pure Nash equilibrium, namely the third one
in Table I. Now let m1 be a mixed strategy whose support
contains three distinct values i < j < k for X1. Among the
conditions for it to be a mixed Nash equilibrium we get that
α = j−i

(1−p)i−(1−p)j ã and the same replacing j for i and k for
j. The two must be equal which implies

(1− p)j−i
(

1− (1− p)k−j
)

1− (1− p)j−i
=
k − j
j − i

. (23)

The left-hand side is strictly decreasing in p for 0 < p < 1
and its limit value for p → 0 is k−j

j−i . In other words, the
equality never holds, and there cannot be more than two values
in the support of any mixed Nash equilibria. We are left with
4 equations, namely the conditions for β 〈X1 = i〉 + (1 −
β) 〈X1 = j〉, with i < j, and α 〈d2 = 0〉 + (1 − α) 〈d2 = 1〉
to be an equilibrium; the first two conditions on u′1 solved for
α as given above, whereas for β we get

(1− β)(1− p)j + β(1− p)i = 1− b̃ (24)

whose solution is β =
1− (1− p)j − b̃

(1− p)i − (1− p)j
. (25)

The other two equations are trivial. The equilibrium inequalities
for X1 have the form

∀k 6= i.
1− (1− p)j−i

j − i
≥ 1− (1− p)k−i

k − i
. (26)

As the function 1−(1−p)x
x is decreasing in x, an interesting

observation can readily be made: if i 6= 0, setting k = 0 is a
valid choice in the function above; but then, as i < j, the left-
hand side with parameter 0 < j − i will always be lower than
the right-hand side. On the other hand, when i = 0 then the
lowest k can go is k = 1, which therefore forces j = i+k = 1.
Ultimately, we have a mixed Nash equilibrium with(

1− b̃

p

)
〈X∗1 = 0〉+

b̃

p
〈X∗1 = 1〉

ã

p
〈d∗2 = 0〉+

(
1− ã

p

)
〈d∗2 = 1〉

which only exists for ã, b̃ < p. For ã = p a similar mixed Nash
equilibrium exists for d∗2 = 0 and arbitrary β ≥ 1 − b̃

p . One
can see that these equilibria are nothing but a generalization
of (22) with p < 1.

3) The case p = 1 and q > 0 (perfect attack): We consider
as in the previous case a mixed strategy m1 with support
containing at least three distinct values i < j < k, and again
we obtain that such a strategy can never be a Nash equilibrium.
The argument distinguishes two cases: if i > 0 then the formula
for α is opposite to the one found above, namely α = 1 −

j−i
(1−q)i−(1−q)j ã, and the argument follows from the previous
analysis; for i = 0, on the other hand, we get the same formula
for j and k, whereas for i and j it has the form α = 1− ãj−1

(1−q)j .
It is however known from (18) that all values of X1 greater
than a bound, which is easily seen to be always below ã−1,
are strictly dominated; an equilibrium, mixed or otherwise,
containing a value j > ã−1 is therefore impossible: but that
implies α > 1, which is impossible.

We are then left with the only remaining case, namely i > 0.
The value for β is seen to be β = b̃−(1−q)j

(1−q)i−(1−q)j ; but the
additional condition for u′2 in i > 0 unfortunately implies that
α = 1, which is also impossible (it would require i = j).
Ultimately, there are no mixed Nash equilibria for this case.
We note that in handling it, we did not refer to (21), which is
true when b̃ > 1− q, and indeed does not need to be exploited.
For a more rigorous analysis one can note that said condition
would hold for β to be valid in the first place.

4) The case p < 1 and q > 0: Similar to the previous cases,
we prove that for a generic mixed strategy m1 we cannot have
three different values i < j < k in its support; repeating the
same analysis for i and j as before we obtain

α =
ã(j − i)− ((1− pq)i − (1− pq)j)

((1− p)i − (1− p)j)− ((1− pq)i − (1− pq)j)
. (27)

This value is in the correct range only if

(1− pq)i − (1− pq)j < ã(j − i) < (1− p)i − (1− p)j (28)

and this double inequality allows us to prove that it is
impossible that there be two values of α satisfying a similar
equivalence as those above. We find a formula for β, namely

β =
(1− pq)j − (1− p)j − b̃

((1− p)i − (1− p)j)− ((1− pq)i − (1− pq)j)
(29)

By contrast, equilibrium inequalities are complex and do not
easily admit analysis. A detailed study is left for future research.

III. NUMERICAL ANALYSIS

For a better understanding of the results, we consider some
practical numerical evaluations.

Fig. 1 shows the values of X∗1 for the third Nash equilibrium
in Table I as a function of p. The curves are ordered from
flattest to sharpest, for various values of ã. The locus of maxima
for X∗1 is displayed as the dashed line. Its formula is readily
obtained from the definition of x, and namely it is x∗ = 1−p

p .
As a function of ã, it decreases exponentially since ã becomes
very small (relative attack cost goes down) the amount of
failures that can be tolerated increases as attacks are cheap and
can be massively launched. Eventually, the linearly additive cost
of each attack always prevails, and overwhelms the diminishing
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Fig. 1. Number of attacks at equilibrium X∗1 as a function of attack success
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ã = 10−2
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Fig. 2. Relative utilities of attacker (u′1) and defender (u′2) vs. attack success
probability p for various relative attack costs ã.

gain that is expected from it. This occurs up until p = ã, at
which point there is no more incentive to attack.

Relative utilities u′1 and u′2 are shown in Fig. 2 as functions
of p in the case of the third pure equilibrium; the values for ã
are the same as before. It is interesting that, in the case of no
defense, u′2 is not monotonically decreasing; this is especially
evident in the jagged case ã = 10−1. A defender may yet
prefer slightly higher successful attack probabilities, as they
will trick the attacker into launching fewer attacks, for which
they are not prepared (as d∗2 = 0).

Fig. 3 repeats the same analysis, but considering an increas-
ing value of ã and a decreasing value of q as a function of p
to see how many attacks a prosumer can handle. It is expected
that the number of attacks increases as the attack cost decreases
and the probability of defense holding up increases. On the
other hand, the higher the probability of a successful attack,
the lower the number of attacks, to contain the costs.
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ã = 0.03, q = 0.86
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Fig. 3. Number of attacks at equilibrium X∗1 vs. attack success probability p
for various values of defense failure probability q and relative attack cost ã.
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Fig. 4. Pure Nash equilibria as a function of attack success probability p and
defense failure probability probability q with relative attack cost ã = 1

5
and

relative defense cost b̃ = 1
4

. Nash equilibria numbered as per Table I.

Finally, Fig. 4 shows a phase diagram of the game, i.e., the
areas for p and q in which the major pure Nash equilibria exist.
The light-grey area is associated the third Nash equilibrium
in Table I, and both the third and the fifth are present when
p lies on one of the dashed vertical lines. The same can be
said for the fourth and sixth equilibria, which lie in the dark-
grey shaded areas and dashed hyperbolic segments. It can be
seen that in many ranges of p and q there is no pure Nash
equilibrium, and that the two main ones coexist only for a
small sliver of the domain. Nevertheless, such empty areas
must include a mixed Nash equilibrium.

IV. CONCLUSIONS

We considered a smart grid scenario where prosumers
contending for the role of energy supplier of a consumer can
attack each other or enact some defense mechanism, which is
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modeled a static game of complete information. Focusing on
2 prosumers, we studied the Nash equilibria and we analyzed
the resulting model. A complex correlation between network
parameter values and number, type, and associated utilities of
Nash equilibria was discovered. For example, we found out
that increasing the cost of an attack does not always correspond
to a lower optimal number of attacks.

The model discussed in this paper can be generalized in
various directions, such as introducing more than one consumer,
each with its own Eask

i or assuming partial knowledge over
power parameters and probabilities p and q [33]. The topology
of the grid can also vary in time, either due to natural dynamics
or because of malicious interventions of some nodes [11],
[34], and the model may be developed considering various
rounds as well as player types by extending it to a multi-stage
Stackelberg game with strategic interactions [29] or a dynamic-
parallel interaction Bayesian game by introducing multiple
player types [35]. All of these are interesting developments to
be explored in future research.
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