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Abstract—Photovoltaic systems have become increasingly pop-
ular as a source of renewable energy due to their environmental
benefits and cost-effectiveness. However, sensor faults can signifi-
cantly impact the performance of photovoltaic systems, resulting
in reduced energy output and increased maintenance costs. This
paper presents an effective approach for detecting sensor faults
in photovoltaic (PV ) systems using ensemble learning and the
exponentially weighted moving average (EWMA) chart with
nonparametric threshold estimation. The proposed approach
trains the ensemble models using data collected during normal
operating conditions of the PV system and detects any sensor
faults by analyzing the residuals generated from the ensemble
models. The EWMA chart is then applied to track changes
in the residuals over time and detect any abnormalities. The
flexibility of the chart is enhanced by computing the detection
threshold using kernel density estimation (KDE). This approach
improves the accuracy and reliability of the fault detection
process. The proposed approach is assessed based on simulated
data from a PV system using PVGIS. The results of the study
demonstrate that the proposed method effectively detects sensor
faults in photovoltaic systems, and the baggeed trees-based
EWMA scheme outperforms the Boosted trees-based scheme in
detecting faults in the pyranometer.

Index Terms—Anomaly detection, Photovoltaic system, sensor
faults, machine learning, monitoring charts.

I. INTRODUCTION

Photovoltaic (PV) systems are an essential renewable energy
source that converts sunlight into electricity. These systems
have gained significant popularity worldwide due to their
environmental benefits and potential cost savings [1]. The
PV systems have several components, including solar pan-
els, inverters, batteries, and sensors. Solar panels are the
main component that captures sunlight and converts it into
direct current (DC) electricity. The inverters convert the DC
electricity into alternating current (AC) electricity compatible
with the grid or appliances. Batteries store excess energy
generated by the system during peak hours for use during low-
demand periods or emergencies. On the other hand, sensors
provide crucial information about the system’s performance,
including the amount of energy produced, system efficiency,
and environmental conditions [2].

The performance of PV systems depends on various fac-
tors, including the quality of the components, the system’s

design, and environmental conditions. Faults in PV systems
can occur due to various factors, such as aging, manufacturing
defects, installation errors, and environmental factors, such
as shading or dust. Sensor readings play a crucial role in
optimizing the operation of photovoltaic systems [3]. However,
sensor faults can occur due to various factors, such as aging,
installation errors, and environmental factors. These faults
can lead to performance degradation, reduced efficiency, and
even system failures. Therefore, continuously monitoring and
diagnosing the system’s behavior is essential to detect and
prevent faults [4].

Sensor faults can significantly impact the performance and
reliability of photovoltaic (PV) systems. PV systems rely on
sensors to measure various parameters, such as solar irradi-
ance, temperature, current, and voltage. These measurements
are used to control and optimize the operation of the PV
system, such as adjusting the angle of the solar panels or
regulating the output power. If a sensor is faulty, it can provide
inaccurate or unreliable measurements, leading to suboptimal
or even dangerous operation of the PV system. For example,
a faulty temperature sensor can cause the system to overheat
or underperform, while a faulty pyranometer can cause the
system to overestimate or underestimate the available solar
irradiance. Faults in current and voltage sensors can lead to
incorrect power output, affecting the system’s efficiency and
safety. In addition, sensor faults can also lead to increased
maintenance and repair costs for PV systems. If a fault goes
undetected, it can cause further damage to the system or even
lead to system failure. Therefore, detecting sensor faults in
a timely and accurate manner is essential for ensuring PV
systems’ performance, reliability, and safety.

Several techniques have been introduced for identifying
faults in photovoltaic systems, including rule-based, model-
based, and data-driven methods [5]. The rule-based approaches
rely on predefined rules to detect system malfunctions based
on anticipated sensor behavior [6]. Although easy to imple-
ment, these approaches have limitations, including a lack of
flexibility and an inability to identify complex faults. Model-
based methods rely on mathematical models to represent the
behavior of photovoltaic systems and their sensors, enabling
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the prediction of expected behavior and the comparison with
actual sensor data. However, obtaining precise models for
large-scale PV plants can be challenging. As a result, data-
driven monitoring methods are typically employed in such
situations. Data-driven monitoring relies on historical data
from a fault-free process to create an empirical model for de-
tecting faults in future data. Data-driven methods have gained
popularity recently due to their ability to handle large and
complex data sets [7]–[9]. Data-driven methods for fault detec-
tion in photovoltaic systems can be categorized into statistical
methods and machine learning methods. Statistical methods
use statistical techniques to analyze the data and detect any
deviations from the expected behavior. These methods include
control charts, regression analysis, and time-series analysis.
On the other hand, machine learning methods use algorithms
to learn patterns and relationships in the data and use them to
detect faults. These methods include neural networks, decision
trees, support vector machines, and random forests. Machine
learning methods are often combined with statistical methods
to improve their performance.

Several data-driven methods have been developed in the
last twenty years to enhance the detection of faults in PV
systems [10], [11]. For instance, in [12], Taghezouit et al.
proposed a monitoring methodology for detecting anomalies
in photovoltaic systems using principal component analysis
(PCA) and multivariate monitoring schemes. An assumption-
free PCA-based detection method is introduced using Kernel
Density Estimation (KDE) to set nonparametric thresholds for
decision statistics. The proposed method is applied to real
measurements from a 9.54 kWp grid-connected PV system,
and six case studies are investigated to verify its detection
efficiency. Results indicate that the proposed method with
nonparametric thresholds achieved promising detection per-
formance and can be used as an automatic tool to detect
anomalies in PV systems’ DC and AC sides. In [13], Maleki
et al. introduced a statistical fault detection algorithm to
analyze the waveshape of superimposed PV array power
using the kurtosis function. The algorithm can detect light
faults, discriminate them from severe partial shading, and
work for open-circuit faults. The algorithm’s effectiveness
is demonstrated through case studies on a test PV array
simulation model with parameter uncertainty and signal noise.
The study in [14] presented a statistical procedure to analyze
the operation of a PV plant without using environmental data
as input. The method compares the statistical distributions
of the energy dataset of different arrays and can detect and
locate abnormal operating conditions before they become
failures. In [15], a fault detection method for solar energy
production systems using the least squares method has been
proposed. An analytical model based on the Bishop model is
presented and implemented in MATLAB to simulate healthy
and faulty PV cases. The simulation results show that the least
squares method can improve fault detection and is easy to
implement. Also, a fuzzy logic approach is used for decision-
making and provides encouraging overall results for this

approach. The study in [16] proposes a decision tree algorithm
(C4.5) for fault classification and diagnosis in a PV plant.
A non-parametric model is used to predict the state of the
GCPVS by learning from a dataset collected under different
weather conditions. Results show high prediction performance
for detection and diagnosis, with an accuracy of 99.80% in
discriminating between string fault, short circuit fault, line-line
fault, and fault-free data. In [17], Chen et al. propose a method
for monitoring photovoltaic (PV) systems that utilizes a vector
autoregressive (AR) model to model the post-change signal
and the generalized local likelihood ratio test to detect faults.
Multiple meters are used to measure various output signals of
the PV system, and the method exploits the time correlation of
the faulty signal and signal correlation among different meters.
The method is evaluated through extensive simulations and is
shown to achieve fast detection and satisfactory performance
for various types of faults in PV systems.

Although fault detection in photovoltaic systems has been
studied in the literature, sensor faults detection is a specific
subfield that has not received as much attention. Sensor
faults can lead to misinterpretation of the data, causing false
alarms or missed detections of actual faults. Therefore, it is
essential to develop reliable methods to detect sensor faults
in photovoltaic systems. The contribution of this paper is the
use of ensemble learning methods, specifically boosted trees
and bagged trees, combined with the EWMA chart for sensor
fault detection in photovoltaic systems. Ensemble learning
methods are efficient in modeling input-output data, and by
combining several weak learners, they can reduce prediction
errors [18]. Ensemble models are employed to predict solar
power production based on environmental and electrical in-
puts. The EWMA chart is sensitive to small changes and is
applied to the residuals generated from the ensemble models
to detect sensor faults. In addition, the detection threshold of
the EWMA chart is computed in a nonparametric way using
kernel density estimation to extend its flexibility. The reference
model is obtained by training the algorithm using only fault-
free data in the proposed sensor fault detection approach. This
means that the algorithm learns the system’s normal behavior
by observing its output under normal conditions. By doing so,
the algorithm can establish a threshold for detection based
on the system’s expected behavior. This approach has the
advantage of not requiring any data labeling, which can be
time-consuming and costly. Moreover, using only fault-free
data for training ensures that the reference model is based on
the actual behavior of the system under normal conditions,
which increases its accuracy in detecting faults. Therefore,
this approach offers a simple and efficient solution for sensor
fault detection that can be applied in a wide range of systems
without requiring extensive labeling or prior knowledge of
the system’s faults. The proposed approach was evaluated
by simulating different sensor faults pyranometers to assess
its performance using four statistical metrics. The results
showed that the proposed approach achieved high detection
performance for all simulated sensor faults. This approach can
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help improve the reliability and performance of photovoltaic
systems by enabling the timely detection of sensor faults,
leading to prompt maintenance and repair actions.

The paper is organized as follows: Section II presents
an overview of Bagged trees, EWMA, and the proposed
ensemble learning-based EWMA anomaly detection approach.
In Section IV, the performance of the proposed method is
evaluated using simulated PV data with various sensor faults.
Finally, Section V concludes the paper with a summary of the
findings and suggestions for future research directions.

II. PRELIMINARY MATERIALS AND METHODS

A. Bagged regression trees (BT)

Bagged regression trees (BTs) are a machine-learning ap-
proach that can be used for solar power prediction. The method
involves training multiple decision trees on different subsets
of the training data, which helps to reduce overfitting and
improve the robustness of the model [19]. The final prediction
is then obtained by averaging the predictions of all the trees
in the ensemble. The bagging algorithm involves constructing
k bootstrap datasets D1, D2, . . . , Dk by sampling from the
original dataset D with replacement, where each sample has
an equal probability of being selected. A regression tree is
then fit to each bootstrap sample Di to obtain a set of models
f1(x), f2(x), . . . , fk(x). The final prediction is then given by
the average of the predictions of each model:

ŷ(x) =
1

k

k∑
i=1

fi(x). (1)

For solar power prediction, the input x could be weather data
such as temperature, humidity, and wind speed, and the output
ŷ would be the predicted solar power output. Bagging helps
to reduce overfitting and improve the stability and accuracy of
the predictions [20]. By randomly selecting subsets of the data,
the bagged trees are exposed to different patterns in the data,
which helps to reduce overfitting [21]. In this work, we will
utilize Bayesian optimization for the purpose of optimizing
the hyperparameters of BT.

Overall, the bagging technique enhances the model’s abil-
ity to handle noise and outliers by sub-sampling the data
and reducing their impact on the final predictions. Addition-
ally, bagging is highly flexible as it can be applied to a
wide range of base models including decision trees, neural
networks, and support vector machines (SVMs) to capture
complex relationships within the data. Its implementation is
also relatively simple, and it can be scaled to handle large
datasets by parallelizing the computation. Overall, bagging is
a useful technique for improving the accuracy and robustness
of machine learning models, particularly in scenarios where
the data is noisy or contains outliers.

B. EWMA monitoring chart

The EWMA monitoring chart is a widely used statistical
process control technique that effectively identifies shifts and

anomalies in time series data. It involves computing a weighted
average of previous observations, with the weights decreasing
exponentially as the observations become older. The EWMA
statistic at time t is calculated using a formula given by [22]:

St =

{
X1, t = 1

λXt + (1− λ)St−1, t > 1,
(2)

where xt is the observation at time t, λ is the smoothing
parameter, and St is the EWMA statistic at time t. The pro-

posed approach utilizes the kernel density estimation (KDE)
method to set the threshold of KD-based anomaly detectors by
utilizing data without anomalies, which increases flexibility.
The probability density function (PDF) of the charting statis-
tics is estimated using the KDE method, and the detection
threshold is determined based on the estimated distribution of
charting statistics, with the (1 − α)-th quantile being used as
the threshold.

III. PROPOSED BT-BASED EWMA CHART FOR SENSOR
FAULT DETECTION IN PV SYSTEMS

The proposed BT-EWMA anomaly detection method is a
statistical process control approach that combines the benefits
of BT and the EWMA control chart. The BT algorithm is
used to model the underlying relationships between the input
variables and the output variable, while the EWMA control
chart is used to monitor the residuals of the BT model. This
approach involves several steps, including data preprocessing,
training a BT model using 5-fold cross-validation, computing
the EWMA thresholds, and online monitoring of the test data.
During the training stage, the BT model is trained on anomaly-
free data using Bayesian optimization for hyperparameter
tuning. We evaluate the model using three commonly used
metrics, namely R2 (coefficient of determination), RMSE (root
mean squared error), and MAPE (mean absolute percentage
error). These metrics indicate the accuracy and performance
of the model in predicting the expected values of the solar
power output. Moreover, to avoid overfitting and ensure the
model’s robustness, we perform a 5-fold cross-validation dur-
ing the training process. This approach allows us to evaluate
the model’s performance on multiple subsets of the training
data, thereby reducing the risk of overfitting to a particular
training data set. The trained BT model is then used to
predict the expected values of the test data. The residuals
between the predicted and actual values are used to compute
the EWMA control statistic. Using the KDE approach, the
detection threshold for fault detection is computed based on
the estimated distribution of the charting statistics. Finally,
the EWMA control statistic is compared to the previously
computed threshold, and if the control statistic exceeds the
threshold, the corresponding sample is labeled as an anomaly.
This BT-EWMA approach effectively detects faults in PV
systems, reducing the need for manual inspection and mainte-
nance. Algorithm 1 presents an overview of the fundamental
procedures involved in the BT-EWMA approach.
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Algorithm 1 BT-EWMA Anomaly Detection
Input: Training data Dtrain and test data Dtest

Output: Anomaly labels for Dtest

Step 1: Data Preprocessing
• Discard outliers and impute missing values in Dtrain

• Impute missing values in Dtest using Amelia package
Step 2: Train BT model

• Train BT model on Dtrain with Bayesian optimization
for hyperparameter tuning

Step 3: Compute EWMA Thresholds
• Compute the EWMA statistic based on the residuals from

the BT model
• Compute the detection threshold for fault detection using

KDE approach
Step 4: Online Monitoring

• For each sample xt ∈ Dtest, predict its expected value
using the trained BT model

• Calculate the residual error between the predicted value
and the actual value

• Compute the EWMA control statistic for the residual
error

Step 5: Anomaly Detection
• Compare the EWMA control statistic with the previously

computed threshold
• If the control statistic exceeds the threshold, label xt as

an anomaly

IV. RESULTS AND DISCUSSIONS

The section discusses assessing a proposed fault detection
approach based on simulated data from a PV system. Several
tools are available for evaluating and estimating PV power
production, including PVGIS, PVWatts, and RETScreen [23].
The study utilized PVGIS to simulate a PV system with an
optimal slope of 23 degrees and an optimal azimuth of 7
degrees (Figure 1). The system had a nominal power output
of 9.5 kWp and was based on crystalline silicon technology
with a system loss of 14%. Hourly data were collected for one
year, including PV power output (P), global in-plane irradiance
(G(i)) in watts per square meter, sun height (Hsun) in degrees,
air temperature (T2m) in degrees Celsius, and wind speed at
10 meters (WS10m) in meters per second.

Figure 2 presents the pairwise correlation coefficients be-
tween the active power (P) and the four input variables. We
observe a strong linear relationship between the PV power
output, global in-plane irradiance, and sun height. This is
because the amount of solar irradiance directly affects the
power output, and the sun height changes during the day,
affecting the angle at which the solar irradiance strikes the
panels. We also observe a moderate correlation between the
power output and air temperature, while wind speed at 10m
has a relatively weak effect on PV power output.

The RReliefF algorithm [24] was used to determine the
most significant features for solar power prediction, as shown

Fig. 1. PV system simulation via the PVGIS web-interface.

Fig. 2. Correlation matrix of input-output variables in a simulated PV system.

in Figure 3. The results indicate that the global in-plane
irradiance is the most important input variable, followed by
the sun’s height. The impact of air temperature and wind speed
at 10 meters on solar power output is relatively lower. These
feature importance scores can be helpful in optimizing the
performance of a solar energy system.

To evaluate the performance of two methods, this study
utilized one year of hourly data. The data was split into 80%
for training and the remaining for testing. To prevent over-
fitting, a fivefold cross-validation procedure was employed
during the training. The BT and BST models were used with
default parameters of 30 learners, a minimum leaf size of 8,
and a learning rate of 0.1. The actual and predicted DC power
from the trained models are presented in Figure 4, indicating
that the ensemble models can accurately capture the trend in
the DC power data. Visual analysis shows that the BT model
provides better prediction performance than the BST model.

The MAE and RMSE values presented in Table I indicate
that the BT model has lower errors than the BST model,
indicating its potential as a better predictor of PV power
output. Moreover, the high R-squared value of 0.999 indicates
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Fig. 3. Feature importance scores sorted using RReliefF algorithm.

Fig. 4. Power prediction results of the two machine learning models based
on test data.

that the BT model explains most of the variability in the data.

TABLE I
COMPARISON OF PV POWER PREDICTION RESULTS.

Model MAE RMSE R2

Bagged Trees 25.125 61.349 0.999
Boosted Trees 90.047 160.951 0.996

The trained models will be combined with the EWMA
chart to detect sensor faults in simulated data from a PV
system. One case study will be considered: faults in the
pyranometer. To evaluate the performance of the proposed
approach for anomaly detection, we utilized four standard
metrics: Accuracy, Precision, Area Under the Curve (AUC),
and F1-score [25]. These metrics are commonly used in
machine learning and data mining to assess the effectiveness of
classification and detection methods. Accuracy is the ratio of
correctly predicted instances to the total number of instances,

while precision measures the ratio of true positives to the
total number of positive instances. AUC is a measure of the
detector’s ability to distinguish between positive and negative
instances, and F1-score is a harmonic mean of precision and
recall. These metrics provide a comprehensive evaluation of
the proposed approach’s effectiveness in detecting anomalies.

1) Case Study 1: Sensor Faults in Pyranometer: A pyra-
nometer is a measurement device to determine the amount of
solar irradiance received on a planar surface. It comprises a
thermopile sensor that generates a voltage proportional to the
quantity of incident solar radiation. Pyranometer sensor faults
can occur due to various factors such as aging, environmental
factors, and mechanical damage. These faults can lead to
inaccurate measurements and adversely affect the performance
of solar power systems. Thus, detecting and diagnosing pyra-
nometer sensor faults is essential for ensuring reliable and
efficient solar power system operation. In this case study, two
examples of sensor faults in pyranometers were considered,
and a bias fault was introduced between sampling time instants
55 and 65. In the first example, the bias had a constant
amplitude of 70% of the total variation in solar irradiance
measurements, making it relatively easy to detect using the
BT and BST-based EWMA schemes, as shown in Figure 5.

Fig. 5. Detection results of (a) BT-EWMA, and (b) BS-EWMA schemes in
the presence of Sensor fault in pyranometer.

Table II presents the detection performance of the BT and
BS-based EWMA schemes for a constant bias sensor fault in a
pyranometer. The results indicate that both methods can detect
the fault with high accuracy and precision. However, the BT-
EWMA scheme outperforms the BS-EWMA in terms of AUC
and F1-score when the bias is at 50%. Both methods achieve
perfect detection accuracy and precision when the bias is
increased to 80%. These results demonstrate the effectiveness
of the proposed approach in detecting constant bias sensor
faults in pyranometers. It is worth noting that the performance
of the BS-based scheme is relatively lower than the BT-based
scheme. This may be attributed to the fact that the BT model
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is better at capturing the underlying patterns and trends in the
data, which are essential for detecting faults accurately.

TABLE II
DETECTION RESULTS OF THE BT AND BS-BASED EWMA SCHEMES FOR

THE PRESENCE OF A CONSTANT BIAS SENSOR FAULT IN A PYRANOMETER.

Method Accuracy Precision, AUC F1-score
Bias=50%

BT-EWMA 0.99 0.92 0.99 0.96
BST-EWMA 0.96 1 0.82 0.78

Bias=80%
BT-EWMA 1 1 1 1
BS-EWMA 0.96 0.89 0.86 0.8

V. CONCLUSION

In this study, we proposed a method for detecting sensor
faults in photovoltaic systems using ensemble learning models
and the EWMA chart. We evaluated the performance of two
ensemble models, the BT and BS, using one year of hourly
data. The results showed that the BT model performed better
than the BST model in predicting PV power output, as indi-
cated by lower MAE and RMSE values and a higher R2 value.
We then combined the trained models with the EWMA chart to
detect sensor faults in simulated data from a PV system. Using
the KDE approach to determine the detection threshold also
increases the flexibility of the method, making it suitable for
different applications. One case study was considered: sensor
faults in the pyranometer. The results showed that the proposed
method effectively detected the introduced sensor faults. The
BT-based EWMA scheme outperformed the BS-based scheme
in detecting faults in the pyranometer. Overall, the proposed
method can be a useful tool for ensuring the reliable and
efficient operation of photovoltaic systems by detecting sensor
faults in a timely manner.

Future work includes applying the proposed method to real-
world photovoltaic systems and comparing its performance
with other methods for sensor fault detection. Additionally,
exploring the applicability of the proposed method to other
types of sensors, such as temperature and humidity sensors,
can be beneficial. Future research could also focus on explor-
ing the application of deep learning techniques, such as trans-
formers, for detecting sensor faults in PV plants. Additionally,
integrating the proposed method with advanced control and
optimization algorithms could improve the performance and
efficiency of PV plants.

REFERENCES

[1] C. Lupangu and R. Bansal, “A review of technical issues on the
development of solar photovoltaic systems,” Renewable and Sustainable
Energy Reviews, vol. 73, pp. 950–965, 2017.

[2] R. Rajesh and M. C. Mabel, “A comprehensive review of photovoltaic
systems,” Renewable and sustainable energy reviews, vol. 51, pp. 231–
248, 2015.

[3] D. S. Pillai and N. Rajasekar, “A comprehensive review on protection
challenges and fault diagnosis in pv systems,” Renewable and Sustain-
able Energy Reviews, vol. 91, pp. 18–40, 2018.

[4] F. Harrou, B. Taghezouit, S. Khadraoui, A. Dairi, Y. Sun, and
A. Hadj Arab, “Ensemble learning techniques-based monitoring charts
for fault detection in photovoltaic systems,” Energies, vol. 15, no. 18,
p. 6716, 2022.

[5] Y.-Y. Hong and R. A. Pula, “Methods of photovoltaic fault detection
and classification: A review,” Energy Reports, vol. 8, pp. 5898–5929,
2022.
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