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Abstract— The optimal installation and size of renewable 

distributed generation (RDG) in a distribution network has always 

been challenging for utilities and consumers, considering 

environmental, economic, and technological factors in order to 

extract the greatest possible benefits, especially in remote and 

small areas. In order to maximize their potential benefits, this has 

prompted the investigation of several techniques for determining 

their optimal location and size, which minimizes system losses, 

improves the voltage profile, and enhances system dependability 

and stability. In this work, an objective function is developed to 

optimally size two types of RDG using two modern meta-heuristic 

algorithms for optimal loss reduction in radial power distribution 

networks. Grey Wolf Optimization (GWO) and Whale 

Optimization Algorithms (WOA) are tested to minimize the power 

losses and enhancing the voltage profile of the standard IEEE 69 

bus system. The study compares both algorithms for different 

scenarios of various RDG penetration levels. The obtained results 

clarifies the superiority of GWO algorithm over WOA in 

achieving a global optimal solution for minimizing power loss with 

a small sized RDG.  

Keywords—Renewable Energy Resources, Whale Optimizer 

(WOA), Grey Wolf Optimizer (GWO), Optimal Size, Optimal 

Location, smart grid 

I. INTRODUCTION  

The conventional power grid's loading has escalated in 
recent years, prompting the deployment of renewable energy to 
improve the power grid’s efficiency and performance while  
meeting the required power demand [1], [2]. Through the use of 
abundant solar and wind energy, energy efficiency and 
renewable energy policies can help reduce the demand for fossil-
fuel-generated energy (such as natural gas, oil, and coal-fired 
power plants) [3]. Stand-alone and decentralized systems that 
use a hybrid combination of photovoltaics (PVs) and wind 
turbines (WTs) are currently the most promising renewable 
resources for meeting load demands, especially in remote 
locations [4]. Unlike conventional electrical networks, 
decentralized systems are more economical to establish due to 
the low cost of electrical system infrastructure, reduced 
emissions, and improved efficiency [5]. With the help of smart 
grid technology, full utilization of RDG can be achieved for 
maximized benefits for utility operators and consumers. 

Researchers are constantly tackling the problem of 
renewable sources optimal sizing and placement as it is 
considered one of the most critical aspects of integrating hybrid 
renewable energy systems and a major key factor in ensuring 
operational profitability and maximum yield extraction. 
Accordingly, a vast number of studies, both theoretical and 
applied, have been conducted in this field, which employs a 
variety of optimization techniques. Commonly, optimization 
algorithms can be classified into analytical, and meta-heuristic 
(intelligent) techniques [6]. Analytical techniques rely on the 
development of a mathematical system model, which yields 
precise results while requiring minimal computing time. 
However, analytical strategies are appropriate for small and 
simple systems with a small number of state variables involved. 
Metaheuristic algorithms on the other hand, add stochasticity to 
the solution obtained allowing them to explore the search space 
continuously [7].   

Different Metaheuristic techniques have been developed to 

solve complex power engineering problems such as Particle 

Swarm Optimizer (PSO), Genetic Algorithms (GA), WOA, and 

GWO. In [8], authors have compared the performance of 

Particle Swarm Optimization (PSO) and Simple Genetic 

Algorithm (SGA)  for total energy loss reduction on a 33 bus 

system. A study using Pathfinder Algorithm (PFA) was carried 

out in [9] to significantly reduce active power losses and 

reducing the average voltage deviation when compared to other 

algorithms. In [10], an Improved Crow Search Algorithm 

(ICSA) was applied to a hybrid renewable system employing 

PV/wind /batteries and applying generation uncertainties. The 

work in [11] used Honey badger algorithm (HBA) to optimally 

size four different types of RDG units.  PSO and Dragonfly 

algorithms (DA) were employed simultaneously in [12] to 

achieve maximum savings and an enhance the voltage profile 

using different types of renewable resources with network 

reconfiguration. Authors in [13] examined multiple 

optimization techniques in attempt to find the optimum 

configuration for maximum loss reduction, where the Whale 

Optimization Algorithm (WOA) achieved better results among 

all the tested algorithms. The study in [14] used a Hybrid Fuzzy 

Equilibrium Optimizer (HFEO) to minimize active power losses 

11th IEEE INTERNATIONAL CONFERENCE ON SMART GRID June 04-07, Paris, FRANCE

icSmartGrid 2023



by integrating different types of renewable energy resources and 

combining fuzzy logic with a metaheuristic optimizer leading to 

better performance with fast convergence speed.  
In this paper a comparative study has been performed on  

radial power distribution system for the purpose of optimally 
allocating and sizing two renewable resource units (PV/Wind), 
all while serving the main objective goal of minimizing the total 
active power losses in distribution systems feeders and without 
violating the bus voltage profile. Load flow calculation using 
Backward/ Forward Sweep (BFS) methodology is employed. 
The study compared the performance of Grey Wolf 
Optimization (GWO) and WOA applied to the IEEE-69 bus 
standard system at a variety of penetration levels.  

II. PROBLEM FORMULATION 

A standard IEEE-69 bus test system has been considered in 
this work which comprises 69 nodes, 5 looping lines, with 7 
lateral feeders and edges on each branch [15]. Nominally, the 
system voltage is 12.66 kV, with total connected load of 3802.19 
kW and 2694.60 kVAR.  

A. Load Flow Algorithm: 

The proposed method performs a load flow study using the 
BFS method [16], which is widely regarded as one of the most 
effective methods for radial distribution system load-flow 
analysis where power losses for each bus branch and voltage 
magnitudes at each node are calculated. This method consists of 
two cycles: a backward sweep and a forward sweep cycle. 
Backward sweep computes voltage and currents using from the 
farthest node from the source node, while the forward sweep 
computes the downstream voltage is calculated from the source 
node. The flow chart in Fig (1) shows the major steps of the BFS 
algorithm (1). 

Start

Read line data and load data

Set Flat Voltage as 1P.u

Compute nodal current  

Compute nodal voltage and phase 

angles using forward propagation

Calculate total power losses and branch 

power loss

Converged load 

flow?

End

yes

no

 

Fig. 1. BFS Work Flow Algorithm 

B. Objective Function:  

This paper aims to optimally size and find RDG location to 
reduce active power loss in the power network. The problem can 
be formulated as in (1) to minimize active power loss such that: 

𝑂𝐹𝑜𝑏𝑗𝑒𝑐𝑡  =  𝑀𝑖𝑛 (𝑃𝑇𝑜𝑡𝑎𝑙)   (1) 

 

Where 𝑂𝐹𝑜𝑏𝑗𝑒𝑐𝑡 , 𝑃𝑇𝑜𝑡𝑎𝑙  represent the main objective goal and 

the total system active power losses, respectively. Solving the 

corresponding objective function will help in determining the 

combined total RDG capacity, location and individual PV/wind 

capacity.  

C. Technical Constraints:  

The objective function in (1) is subject to several technical 
constraints which can be described in (9)-(13). These constraints 
can be divided into: 

1) Location Of  Wind/PV 
In order to maximize system stability, the wind/PV position 

should be close to the loads. Therefore, the RDG placement 
restriction is considered to begin on the second bus and may be 
stated as follows (9): 

𝐵𝑢𝑠2 ≤ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≤ 𝑁 (2) 
 

Where 𝐵𝑢𝑠2 is the second bus, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is the renewable 
energy resource location, and 𝑁 is indicate the bus number for 
the IEEE-69 bus system.  

2) Size  Of  Wind/PV  
To prevent power interruptions, wind/PV sizes and 

capacities are selected to be not less than or equal to 10 % 
(penetration level) of total load power as given by (3) 

0.1𝑃𝐿𝑜𝑎𝑑  ≤ 𝑊𝑖𝑛𝑑/𝑃𝑣 (𝑆𝑖𝑧𝑒) ≤ 𝑃𝑚𝑎𝑥   (3) 

  
Where 𝑃𝐿𝑜𝑎𝑑 represent the total system load demand, 𝑃𝑚𝑎𝑥  

represent the maximum power output from wind/PV units. 

3) Voltage Limit  
In power systems, the permissible amplitude of bus voltages 

should satisfy the range of ± 10% for the load busses and ± 5% 
for the feeders (RDG units), respectively as specified by (4)- (6) 

𝑉𝑏𝑢𝑠−𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑏𝑢𝑠−𝑚𝑎𝑥                                                  (4) 

0.9𝑉𝑖−𝑏𝑢𝑠  ≤  𝑉𝑖 ≤ 1.1𝑉𝑖−𝑏𝑢𝑠 (5) 

0.95𝑉𝑖−𝑓𝑒𝑒𝑑𝑒𝑟  ≤  𝑉𝑖  ≤ 1.05𝑉𝑖−𝑓𝑒𝑒𝑑𝑒𝑟                                (6) 

Such that𝑉𝑏𝑢𝑠−𝑚𝑎𝑥  , 𝑉𝑏𝑢𝑠−𝑚𝑖𝑛 , maximum and minimum 
allowable voltages at buses respectively. 𝑉𝑖−𝑏𝑢𝑠 is the voltage at 
the bus (𝑖), while 𝑉𝑖−𝑓𝑒𝑒𝑑𝑒𝑟   represent the feeder voltage.  

III. METHODOLGY 

A. Grey Wolf Optimizer:  

The Grey Wolf Optimizer (GWO) is a meta-heuristic-based 
optimization algorithm developed by Mir Jalili and Lewis in 
2014 that mimics the natural leadership structure and hunting 
mechanism of grey wolves [17]. The grey wolf lives in a pack 
of up to twelve individuals. The algorithm formulation phases to 
achieve the objective function can be mainly divided into three 
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categories: social hierarchy, encircling the prey, and the hunting 
phase which will be explained in the following sections. 

1) Social Hierarchy 

The ranking begins with 𝛼 and ends with 𝜔. The 𝛼 of the 
pack is at the top of the hierarchy and makes all choices 
regarding hunting and where to stay. The 𝛽  is the second-
highest level in the pack and the 𝛼 's subordinate. They reinforce 
𝛼 's directives and provide feedback to assist it in making sound 
decisions. The 𝜔 members of the pack are expected to simply 
obey orders given by the 𝛼 and 𝛽, while the γ pack reports to 𝛼 

and 𝛽. Accordingly, four types of decision or solutions where 𝛼 
is the best solution, 𝛽, γ are considered to be the second (mean) 
and third best solution respectively, and 𝜔 represents the rest of 
solutions. 

2) Encircling Prey  
As previously stated, the GWO encircles the prey during the 

hunt in the second step. The encircling behavior of the GWO can 
be represented from (7) to (10) as: 

𝐷⃗⃗ = |𝐶 . 𝑋 ₚ(𝑡) − 𝑋 (𝑡)|              (7) 

𝑋 (𝑡 + 1) = 𝑋 ₚ(𝑡) − 𝐴 . 𝐷⃗⃗   (8) 

𝐴 = 2𝑎 . 𝑟 ₁ − 𝑎    (9) 

𝐶 = 2. 𝑟 ₂                                  (10) 

Where 𝑡 is the number of iterations, A⃗⃗  , C⃗   are coefficient 

vectors, X⃗⃗ ₚ is the position of the prey (best solution), X⃗⃗  is the 

current position of the grey wolf. 

3) Hunting 
The hunting process will start to fetch for the best solutions 

𝛼 , 𝛽 , 𝛾  to reach the objective function and the rest of solution 
from 𝜔. The first three best solutions obtained so far are saved 
and oblige the other search agents (including the 𝜔) to update 
their positions according to the position of the best search agent. 
The flow chart in Fig. 2. illustrates the GWO process which can 
follow the relations found from (11) to (15) 

𝑋 (𝑡 + 1) =
𝑋 ₁ + 𝑋 ₂ + 𝑋 ₃

3
 

(11) 

𝐷𝛼⃗⃗⃗⃗  ⃗ = |𝐶₁⃗⃗⃗⃗ . 𝑋 𝛼 − 𝑋 |, 𝐷𝛽⃗⃗⃗⃗  ⃗ = |𝐶₂⃗⃗⃗⃗ . 𝑋 𝛽 − 𝑋 |, 𝐷𝛾⃗⃗⃗⃗  ⃗ =

|𝐶₃⃗⃗⃗⃗ . 𝑋 𝛾 − 𝑋 | 

(12) 

𝑋 ₁ = 𝑋 𝛼 − 𝐴 ₁.(𝐷𝛼⃗⃗⃗⃗  ⃗) (13) 

𝑋 ₂ = 𝑋 𝛽 − 𝐴 ₂.(𝐷𝛽⃗⃗⃗⃗  ⃗), (14) 

𝑋 ₃ = 𝑋 𝛾 − 𝐴 ₃.(𝐷𝛾⃗⃗⃗⃗  ⃗) (15) 

  

 Where 𝑋 1, 𝑋 2, 𝑋 3, 𝐷𝛼⃗⃗⃗⃗  ⃗, 𝐷𝛽⃗⃗ ⃗⃗  ⃗, 𝐷𝛾⃗⃗⃗⃗  ⃗  are represented from 
equations (12) to (15) [18]. 

B. Whale Optimization Technique:  

Mir Jalili and Lewis  introduced the Whale Optimizer 
Algorithm (WOA) in 2016 [19]. The WOA mimics the behavior 
of whales in their search for food by attacking the prey with 
spiral bubble nets blown in a specific path. The algorithm is 
comprised of three phases; encircling the prey, the bubble net 
hunting phase, and the searching phase.  

 

Start 
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t   Max of  

Iteration? 
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α, β, γ and ω.

 

Save the best solution  

 

Update the value of 

a, A and C

 

End
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Fig. 2. GWO Flow Chart. 

1) Encircling Prey: 
Humpback whales encircle their prey, and the manner as it 

upgrades its location from the initial position can be described 
using (16)- (19) 

𝑋 (𝑡 + 1) =  𝑋 ∗(𝑡) − 𝐴 . 𝐷⃗⃗                           (16) 

𝐷⃗⃗ = |𝐶 . 𝑋 ∗(𝑡) − (𝑡)|                                  (17) 

𝐴 = 2𝑎 . 𝑟 ₁ − 𝑎    (18) 

𝐶 = 2. 𝑟 ₂                                  (19) 

 

Where 𝑋 ∗  represents the prey and the best optimized 

solution, 𝑋  is the position vector of whale and 𝑡is the current 

iteration. 𝐴  and C⃗  are coefficient vectors. 𝑎 ⃗⃗⃗   linearly reduces 
from two to zero as the iteration process progresses and 𝑟  is a 
randomly generated vector in the range of [0,1]. 

2) Bubble-net hunting method: 
There are two mechanisms involved in the hunting phase, 

the shrinking mechanism and the spiral updating position. In the 
shrinking mechanism, encircling the prey is achieved by 

decreasing the value of vector 𝐴⃗⃗  ⃗ , which is determined from the 
original position and the best whale position. The Spiral 
mechanism, on the other hand, represents the attacking method 
and is used to determine the distance between the position of 
whale and the prey. This process can be represented 
mathematically by (20) and (21) as: 
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𝑋 (𝑡 + 1) = {
𝑋 ∗(𝑡) − 𝐴 . 𝐷⃗⃗                             𝑖𝑓 𝑝 < 0.5

𝐷′. 𝑒𝑏𝑙 . 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋 ∗         𝑖𝑓 𝑝 ≥ 0.5
 

(20) 

𝐷′ = |𝑋 ∗ − 𝑋 (𝑡)| (21) 

 
Where 𝑝 is number randomly selected from [0,1], D′ is the 

given distance between the prey and humpback whales, 𝑙 is a 
randomly number generated from [-1,1] and  𝑏  is a constant 
number. 

3) Searching for Prey: 
To obtain the global optimum solutions, the whale position 

is updated using a randomly selected whale rather than the best 
whale as represented in (22) and (23). 

𝐷⃗⃗ = |𝐶 . 𝑋 𝑟𝑎𝑛𝑑 − 𝑋 |                                           (22) 

𝑋 (𝑡 + 1) =  𝑋 𝑟𝑎𝑛𝑑 − 𝐴 . 𝐷⃗⃗                                 (23) 

Where 𝑋  is the randomly selected whale of current iteration. 

The flow chart in Fig.3. illustrates the whale optimizer 
process. 

IV. SIMULATION RESULTS AND DISCUSSION 

The GWO and WOA performance on 69-bus IEEE standard 
radial distribution systems was investigated to evaluate the 
performance of the two suggested approaches in addressing 
RDG unit installation, size, and allocation using two different 
types of RDG units (Wind/PV). The simulation analysis was 
carried out using Matlab. As a base case, the total active power 
losses were calculated using the BFS technique before adding 
the RDG units. The results showed that the total active power 
losses are equal to 224.9310 kW without any RDG installed to 
the system. 

In the following investigation, two cases have been analyzed 
regarding the RDG size using GWO and WOA. In the first case 
(Case I), the two RDG units (PV/wind) are assumed to have a 
combined capacity of 3 MW. In the seconds case (Case II), three 
different penetration levels of percentages of the PV/wind units 
are studied and power losses are calculated accordingly.  

A. Case Study I: 

In this case, the system under investigation is tested to 
determine the impact of full penetration of PV and wind units. 
The RDG units are installed to the test system of capacity 3MW 
each corresponding to the maximum power that could be 
obtained from the wind/PV modules. Active power losses were 
calculated using GWO and WOA, and the corresponding results 
are shown in Table I. As observed from Table 1, both GWO and 
WAO produced similar results in terms of active power loss of 
785 kW, and with RDG units allocation at bus 11 and 50. Both 
algorithms reduced the power losses in the network by 65.1% 
compared to the baseline case without the RDG units 
installation. In order to determine the fastest converging 
algorithm, convergence curves for GWO and WOA are depicted 
in Fig. 4. Depending on the complexity and searching 
capabilities of each algorithm, converge occurs in a particular 
time period. Almost every optimization technique strives to find 
the optimal global solution in a short period of time to avoid 
divergence at any stage. Fig. 4 illustrates that WOA achieved the 
optimum and accurate results faster than the GWO.  
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Fig. 3. WOA Flow Chart. 

TABLE I.  GWO AND WOA RESULTS FOR CASE I 

 PV Size 

(MW) 

PV Size 

(MW) 

RDG 

Location  

Power 

Losses 

(MW) 

Base Case ------ ------ ------ 0.224 

GWO 3 3 11,50 0.0785 

WOA 3 3 11,50 0.0785 

 

 

Fig. 4. GWO and WOA Convergence Curves for Case I 
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B. Case Study II: 

Due to the intermittent and stochastic nature of the 
renewable resources [20], it is often recommended that the RDG 
size should not exceed certain limits in order to reduce the power 
grid’s total dependability on RDGs to avoid possible power 
outages. For this reason, Case II investigates the performance of 
GWO and WOA when two RDG units are installed in the test 
system with different penetration levels, corresponding to three 
parts representing 10%, 20% and 30% from total system active 
power. Table 2 shows the results for applying both GWO and 
WOA for different penetration levels indicating the locations 
and the total power loss in each part. Part I results at 10% 
capacity (380 kW) for both wind/PV modules, similar results are 
obtained for both optimization algorithms with the optimal 
location of RDG units at bus 53 yielding total power losses of 
170 kW. In Part II, 20% capacity is tested for a total capacity of 
760 kW from both RDG units. Similar to Part I, both GWO and 
WOA achieved the same power loss reduction level of 129.5 
kW,  with RDG units optimally located at bus 50 and 53.  
Finally, Part III is carried out at penetration level of 1140 kW of 
RDG units, which corresponds to 30% from total IEEE69 active 
power is tested.  Results demonstrated in Table II show the 
superiority of the GWO in achieving the most optimal solution 
in terms of power losses. Compared to 127 kW losses achieved 
with WOA, the total active power losses with GWO are 102.4 
kW if RDGs are placed at bus 50 and 53, with a total size of 570 
kW. Fig. 5 and Fig. 6 show the performance of both GWO and 
WOA in all cases at different possible penetration levels. 
Convergence curves achieved by both proposed algorithms for 
the three penetration levels covered in Case II can be found in 
Fig. 10. In terms of speed in locating the near-optimal minimum 
solution, WOA reaches the optimum solution with the lowest 
number of iterations compared to GWO, yet this is achieved at 
a lower accuracy in optimization results. 

Summarizing the results of Table II, Table III shows the 

percentage reduction in total power losses in both cases studied 

in this work. It should be noted that the higher RDG penetration 

level, the more reduction is system losses can be achieved for 

both algorithms, which is demonstrated in Case I. However, this 

comes at the cost of installing higher RDG units.  

TABLE I.  CASE I AND CASE II RESULTS FOR GWO AND WOA 

 

 

Fig. 5. Case II System Losees with GWO  

 

Fig. 6. Case II System Losees with WOA  

TABLE II.  PERCENTAGE LOSS REDUCTION SUMMARY FOR CASE I AND 

CASE II 

 

Fig. 7. Convergence Curves for Case I and Case II using GWO and WOA 

IEEE-69
GWO

(10%)

GWO

(20%)

GWO

(30%)

Losses (kW) 224.931 170 129.5 102.4

0

50

100

150

200

250

IEEE-69
WOA

(10%)

WOA

(20%)

WOA

(30%)

Losses (kW) 224.931 170 129.5 127

0

50

100

150

200

250

100

110

120

130

140

150

160

170

180

190

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

L
o

ss
es

 (
k
W

)

Iterations

GWO (10%) WOA(10%)
GWO (20%) WOA(20%)
GWO (30%) WOA(30%)

 

 

 

Case 

GWO 

(PV, Wind)  

WOA 
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Power Losses 
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(MW) 
Location 

Size 

(MW) 
Location GWO 
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A 

Base 

Case 
------ ------ 0.224 

Part I 

(10%) 
0.380  53,53 0.380  53,53 0.170 0.170 

Part II 

(20%) 
0.760  50,53 0.760  50,53 0.129 0.129 

Part 

III 

(30%) 

1.140  50,53 1.140  17,53 0.102 0.127 

 

Case  
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Case II- 
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Base Case 
------ ------ ------ ------ 

GWO 
65.1% 24.5% 42.4% 54.5 % 

WOA 
65.1% 24.5% 42.4% 43.5 % 
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V. CONCLUSION 

Traditional power generation based on fossil fuels is 

generally regarded as unsustainable over the long term due to 

the scarcity of non-exhaustible resources and the environmental 

problems caused by their emissions. Renewable energy 

resources are thus a viable option for electricity generation if 

managed appropriately and optimally. This paper presents a 

comparative study for the optimal probabilistic allocation and 

sizing of RDG in distribution systems using PV/wind modules. 

Load flow calculations were implemented using the forward-

backward sweep approach. The optimization problem was 

analyzed using GWO and WOA meta-heuristic algorithms to 

minimize the system power losses in feeders using different 

capacities of RDG and different penetration levels. Based on 

the results, the use of RDG modules helps improve the system 

efficiency by minimizing the total losses, without the need of 

installation of fossil fuel-based generation alternatives, which 

consequently helps is carbon emission reduction. Comparing 

GWO and WOA performances, the GWO results demonstrate 

the efficiency and superiority in finding the optimal sizing of 

PV/wind modules on the distribution network, yet at a slower 

convergence speed compared to the counterpart. 
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