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Abstract—In this paper a fault diagnosis method for 
photovoltaic (PV) modules is developed using an open source 
Machine Learning (ML) platform (Edge impulse). The idea is to 
develop a TinyML  to classify certain defects that can frequently 
occur on PV modules (e.g. dirty, degradation and dust deposit 
on PV modules), and then to integrate the impulse into an Edge 
device for real time application. In this regard a database of 
infrared thermography image was built and used. The model 
could be run locally without internet connection. This method 
could help users to diagnosis their PV modules and make 
decision about the maintenance schedule (cleaning or replacing 
of PV modules). Results clearly report the feasibility of the 
method with a mean accuracy of 93.4 %. The main advantage is 
that, thanks to this platform, embedded ML model could be 
developed quickly. Moreover, edge processes are not affected by 
the latency and bandwidth issues becoming outstanding 
methods for real-time diagnostics. 

Keywords—photovoltaic, fault classification, machine 
learning, deep convolutional neural network, edge device. 

I. INTRODUCTION  
 

Renewable energy is increasingly the focus of the 
scientific community, institutions, and public opinion due to 
the need to reduce the environmental impact of traditional 
energy sources. Among the various renewable technologies, 
photovoltaics is certainly one of the most promising, due to its 
ability to directly transform sunlight into electricity [1]. In 
recent years, the photovoltaic industry has made significant 
progress worldwide. In particular, there have been significant 
improvements in efficiency, durability, reliability and costs. 
The efficiency of photovoltaic (PV) modules has constantly 
improved, thanks to research and development of new 
materials and technologies. In addition, their reliability has 
also improved due to the increased focus on material quality 
and production, and the ability to withstand extreme weather 
conditions such as rain, wind, hail and snow. However, other 
several factors could affect the photovoltaic production such 
as thermal degradation, soiling and shading which could lead 
to hot spot effects. For these reasons, several studies have 
focused on the PV system monitoring and fault detection to 
ensure high reliability and reduce maintenance costs and 
times. Although various methods can be used for this purpose, 
the evaluation of infrared (IR) images allows fast and non-
invasive faults detection and prompt action to solve triggering 
problems [2]. 

Several recent literature studies have faced these kinds of 
issues based on IR images processing in PV fault applications. 
For example, in [3] a fault detection and classification method 

for PV modules using thermal images supported by edge 
detection algorithm and ANN has been proposed. An IR 
images analysis to detect and localize hotspot has been 
performed and described in [4] where the type of failure as 
temporary or permanent is also taken into account. The use of 
Unmanned Aerial Vehicles (UAVs) for visual or thermal 
imaging has led to a breakthrough in this field, allowing for a 
relatively quick scan of the PV plant in real time avoiding its 
disconnection. In [5], an optimised, two-stage drone flight 
strategy for fault detection was proposed, allowing flight 
duration and operational time to be minimised. However, 
faults are detected based on classical image processing 
approaches. In [6], a CNN based algorithm (YOLO) has been 
used to detect and identify PV faults such as hotspots, bypass 
diode failure and cracks by using aerial images by obtaining a 
mean average precision of 84%. A deep learning (DL) 
approach has been used to detect PV faults based on a dataset 
of 42048 module infrared images in [7], where the 
performances of the DL model have been evaluated for 
different types of segmentation. In [8], eleven fault classes 
have been considered in order to fully describe the PV fault 
consequences using a CNN-based method for their 
classification with an accuracy up to 90% in specific failures. 
A large dataset from 28 sites was collected in [9] resulting in 
93220 module IR images. From these, a DL model supported 
by data augmentation was developed to classify the faults into 
five different classes with an average F1-score of 94.52%.  

However, even if these methods lead to great 
performances, the cost-effectiveness of the proposed devices 
and instrumentation is in doubt. Regarding this aspect, recent 
research development has led the implementation of artificial 
intelligence algorithms also in low-cost edge embedded 
devices where the computational performances can be lower. 
In this aspect, TinyML is one of the most promising embedded 
machine learning (EML) platform for edge devices [10]. Also 
in this research field, literature studies have proposed different 
approaches and methodology in order to detect and classify 
PV faults on different scales. For example, in [11,12] 
embedded approaches based on thermal and visual images 
supported by neural networks has been proposed for PV 
module diagnosis of different defect classes on low-power 
edge devices. The studies demonstrate the feasibility of the 
system to operate in real-time obtaining good accuracy results 
and the interfacing of these systems with IoT platforms for 
smart remote monitoring purposes.  

The main reasons and advantages to run the model locally, 
on edge device, are: i) portable device suitability, ii) no need 
to cloud interfacing, iii) enhances the data security and iv) 
reduce the latency. 
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Very limited works are related to the implementation of 
fault diagnosis of PV modules, based on IR images, into an 
edge device for real time application.  

The main objective of the work is to develop a TinyML 
model for fault diagnosis of PV module. The optimized model 
could be easily integrated inside a low-cost and low-power 
edge device (e.g. Nano 33 LBE sense). In this work we try to 
verify the feasibility of a such approach in this field.  

 

II. DATABASE  
The used database consists of 2000 IR thermography 

images collected for PV modules under normal and faulty 
conditions. The PV modules present four different fault 
classes: healthy (N), dirty (D2), degraded (D3) and sand 
deposit on PV module (D1) as shown in Figure 1. 
 

 
 

Fig.1. IR thermography images: a) healthy PV module (N), b) dirty PV 
module (D2), c) degraded PV module (D3) and d) sand deposit on PV 

module (D1). 
 
 Each class contains 500 IR images. The database was 
collected in a semi-arid location (South of Algeria, in a hot 
and dry desert location). Figure 2 shows the experimental 
setup with the examined PV modules and the used IR 
thermography camera (Uni-T Pro UTi260B) with a resolution 
of 256×192 pixels. All IR images were collected manually for 
solar irradiance greater than 500 W/m2 with a perpendicular 
position of the camera on the PV module. 

 
 

Fig.2 Test facility: the examined PV modules and IR camera 

III. METHODOLOGY 
 The methodology used in this study aims to apply a deep 
convolutional neural network (DCNN) to classify some 
defects on PV modules and build the developed model for a 
real time application. To do this we use an open ML platform 
named Edge impulse. To develop the model, we use a CNN 
type MobilNetV2. Regarding the edge device, we choose a 
microcontroller board type Arduino Nano 33 BLE sense.  
Figure 3 depicts a workflow of the embedding procedure. 

 
Fig.3. Workflow of embedding procedure 

 

This comprises four blocks: i) build TensorFlow (TF) model, 
ii) optimize and convert the model to TF Lite, iii) test the 
performance of the model and iv) integrate the model inside 
the mentioned edge device and deploy it. 

A. Edge impulse platform 
 Edge impulse is the leading development platform for ML 
on edge devices, founded in 2019 by Zach Shelby and Jan 
Jongboom.  Edge Impulse provides maximum efficiency and 
speed on a wide range of hardware from MCUs to CPUs [13].  

B. The used neural network  (MobileNetV2) 
Figure 4 shows the basic structure of MobielNetV2 [14]. 

It consists of 53 convolution layers and one average pooling. 
It comprises two main blocks: i) Inverted residual block and 
ii) Bottleneck residual block. It is based on an inverted 
residual structure where the residual connections are between 
the bottleneck layers. Each block has three layers 
(Convolution with ReLu6, Depthwise convolution and 1x1 
convolution without any linearity). As shown in Fig. 4 there 
are two types of convolution layers: i) 1x1 convolution and ii) 
3x3 Depthwise Convolution.  

 

 
Fig.4 MobilNetV2 configuration 

 

C. Microcontroller board  
The selected microcontroller board is the Arduino Nano 

33 BLE sense [15]. The main feature of this board, besides the 
impressive selection of sensors, is the possibility of running 
Edge computing applications (Artificial intelligence 
techniques) on it using TinyML. It helps to  create ML models 
using TensorFlow™ Lite and upload them to the board using 
the Arduino IDE. 

(a) (b) (c) (d) 
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D. Procedure for model developement based on edge 
impulse 
The procedure for developing the model using Edge 

impulse platform can be summarized in the following steps: 

1) Data-acquisition: it consists of upload and label our IR 
images in four classes (D1, D2, D3 and N) 

2) Impulse design: it comprises three steps: 

a) Create impulse: set up the size of the images, add a 
processing block and a learning block. 

b) Image: in this step we select the type of the IR image 
(RGB or Grayscale), and we generate the features of 
the classes. 

c) Transfer learning: here we define the CNN 
parameters (number of training cycle, learning rate, 
validation set, number of neurons in the end layer, 
and the value of dropout). Once these parameters are 
defined, we train the model.  

3) Retrain the model: this step aims to retrain the model with 
known parameters. 

4) Live classification: in this step we test the model with new 
data (IR images).  

5) Model testing: set the expected outcome for each IR image 
to the desired outcome to automatically score the impulse. 

6) Deployment:  this step makes the model run without an 
internet connection, minimizes latency, and runs with 
minimal power consumption. Then, we have to select the 
hardware board (e.g., Nano 33 BLE sense) to build an 
optimized model for real time application (firmware). 
Differently, we can create a library and this can turn our 
impulse into optimized source code to be run on any 
device. 

E. Performance metrics 
 To evaluate the performance of the classifier, we compute 
the F1-score and accuracy (Acc) given by the following 
expression: 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ∗ (𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑅𝑅𝑅𝑅𝑅𝑅+𝑃𝑃𝑃𝑃𝑃𝑃)

 (1) 

𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑖𝑖)𝑖𝑖
∑ ∑ 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑗𝑗)𝑗𝑗𝑖𝑖

   (2) 

where Pre is the precision, Rec is the recall and CM is the 
confusion matrix.  

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑖𝑖)
∑ 𝐶𝐶𝐶𝐶(𝑗𝑗,𝑖𝑖)𝑗𝑗

   (3) 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑖𝑖)
∑ 𝐶𝐶𝐶𝐶(𝑖𝑖,𝑗𝑗)𝑗𝑗

   (4) 

IV. RESULTS AND DISCUSSION 
After several experiments, the optimal model parameters 

are summarized in Table I.  

The confusion matrix of the training performance is shown 
in Table II. As shown from the table, the accuracy is 96.2% 
and the loss is 0.11.  The F1-score ranges between 93% to 
99%. Overall, in terms of accuracy, these results are good and 
demonstrate the correct operation of the proposed solution.  
To check the effectiveness of the approach, we calculated the 
confusion matrix during the validation process using unknown 

IR images. Table III shows the confusion matrix of the 
validation performance.  

TABLE I: MODEL PARAMETERS 

Parametrs of the model  
MobileNetV2 Value 

Number of training cycle  30 

Learning rate 0.0006 

Validation set size 20% 

Dropout 0.2 

Number of node at the end layer 16 

 
TABLE II: CONFUSION MATRIX (MODEL TRAINING PERFORMANCE) 

Class D1 
(%) 

D2 
(%) 

D3 
(%) 

N 
(%) 

Accuracy  
(%) 

Loss 

D1 98.7 1.3 0 0 

96.2 0.11 

D2 0 92.6 1.2 6.2 

D3 0 1.5 98.5 0 

N 0 4.4 0 95.6 

F1-score 99 93 98 95 

 
TABLE III CONFUSION MATRIX ( MODEL VALIDATION PERFORMANCE) 

Class D1 
(%) 

D2 
(%) 

D3 
(%) 

N 
(%) 

Uncertain Accuracy  
(%) 

D1 96.8 1.1 0 0 2.1 

93.45 

D2 1.0 85.1 1.0 6.9 5.9 

D3 0 0 99.1 0 0.9 

N 0 5.8 0 92.2 1.9 

F1-score 98 89 99 93  

 

The accuracy is 93.45% and the F1-score ranges between 
93% to 99%. Also in this case, the accuracy is still good, and 
the considered faults are correctly classified. Based on the 
uncertain and the F1-score the class D3 can be classified 
correctly with an accuracy of 99.1%. The class D2 has a high 
uncertain value, and it is the worst classified class with an 
accuracy of 85.1%. Features explore are shown in Fig.5. 

 

 
Fig.5. Feature explorer of the four classes during the validation process 

 

Figure 6 shows an example of a live classification. An 
unknown image, a dirty PV module (class D2) in this case, 
was selected to check the model ability to classify this image.  
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Fig.6 Selected IR image for testing the model 

 

The results are reported in Table IV. As can be seen the 
model classify the given IR image with good accuracy. The 
predicted class is D2 belonging to the case of dirty PV 
modules, as expected. 

TABLE IV MODEL VALIDATION USING UNKNOWN IR IMAGE  

Name D4_387 

Expected outcome D2 
Class 

D1 0 

D2 1 

D3 0 

N 0 

Uncertain 0 
 

In order to minimize hardware resources and latency, an 
optimization process of the proposed model has been 
performed. In this regard, a comparison between the non-
optimized and optimized model is shown in Table V where, 
for each model, the RAM usage (kB), the flash memory usage 
(MB) and the latency (ms) have been evaluated. For each of 
them, the percentage reduction is calculated between the 
optimized and the non-optimized model. 

TABLE V COMPARISON BETWEEN OPTIMIZED AND UNOPTIMIZED MODELS  

Optimizer RAM usage 
(KB) 

Flash usage 
(MB) 

Latency 
(ms) 

Non-optimized 
model (float32) 474.9 1.6 6,600 

Optimized model 
quantized (Int8) 225.4 0.58 904 

Reduction 52 % 63 % 86 % 

 

As can be seen from Table V, the optimize model RAM 
has been reduced compared to the non-optimized model with 
a percentage reduction of 52%. The flash memory usage is 
also reduced to 0.58 MB, leading to a percentage reduction of 
63%. The latency is also significantly decreased up to 904 ms 
compared to 6,600 ms for the non-optimized model. This 
means that the optimized code can be run about 7 times faster 
than the non-optimized one.  

The last step consists of building the optimized model and 
download it into the selected edge device. Figure 7a shows the 
optimized files from the build model, and Fig. 7b presents the 
uploaded model into the Nano 33 BLE sense. 

 
Fig.7. a) The generated files after building the model and b) 
downloading the code inside the Nano 33 BLE sense. 

V. CONCLUSIONS AND PERSPECTIVES 
In this work, an embedded solution for PV module fault 
diagnosis based on thermographic images was proposed. The 
idea is to incorporate the MobileNetV2 model into a low-
power and low-cost ( ̴ 43 $) edge device (Nano 33 BLE sense) 
for a real-time application with the purpose of detecting and 
classifying four different fault classes. The results obtained 
from the study and the proposed hardware showed that the 
system works properly with an average classification 
accuracy of 93.4%, leading to good classification of the 
considered fault classes. Moreover, the model has been 
optimized taking into consideration the utilization of 
available hardware and latency times, resulting in a model 
RAM size reduction of up to 52%, a flash usage reduction of 
63% and a latency reduction of 86%. This shows how the 
optimization process can lead to a significant improvement in 
running performance and thus allow the model to work more 
efficiently.  
The feasibility of the proposed solution is justified, and the 
model is ready to be deployed by using an infrared camera to 
receive IR image and make diagnosis using the embedded 
classifier, which is the future plan of our work. Through this 
method, it is therefore possible to classify the proposed 
photovoltaic modules faults cost-effectively and, despite the 
use of limited hardware, with good accuracy. This approach 
allows this solution to be integrated into several applications. 
In fact, the edge device could be integrated and used by UAV 
equipped with an IR camera to diagnose faulty PV modules, 
saving time and thus money and resources. 
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