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Abstract—The early detection of safety critical conditions of oil 

levels in legacy industrial or commercial hydraulic machinery is 

becoming a new requirement for cloud-based maintenance service 

and Smart Grid systems. Building communities integrate accurate 

smart sensors to enable near or real-time monitoring. The non-

ideal conditions of oil levels can lead to disastrous costly events. 

However, legacy systems have gone expensive rigorous safety 

qualifications, to alter them makes the integration of new IoT 

monitors a difficult decision. To avoid or mitigate safety related 

recertification, two test setups are proposed to determine the 

sensor accuracy: (1) Full-range liquid height level test at room 

temperature and (2) Limited-range height level test at varying 

temperatures to characterize its non-linearity effects on the sensor 

accuracy. During the empirical testing to obtain an optimal 

solution, the study proposes the use of Design for Six Sigma (DFSS) 

statistical method, an industry best-practice methodology to 

minimize parametric variations -by design- and increase the 

accuracy through measurements of variability and central 

tendency.  Initially, the measured data drifted more than 50 

percent from the desired values for both temperature and height 

readings. After the optimization, the temperature performance 

improved to a tighter specification of 0.25 percent from the initial 

prerequisite of 5 percent while the height performance improved 

from 8 percent starting requirement to 5 percent optimal 

specification. The DFSS empirical test is an effective method to 

achieve repeatable highly accurate oil level monitor.  

Keywords—Internet of Things, Wireless Network, Nodes, Liquid 

Level Measurement, Sensors 

I. INTRODUCTION 

    Today, wireless Internet of Things (IoT) smart sensors 
are increasingly needed to monitor and send vital information 
in real or near real-time about the conditions of safety critical 
assets or equipment [1-2]. Various data types are collected by 
smart sensors to solve numerous issues such as traffic 
conditions, farming conditions, and industrial equipment status 
such as tunnel frame integrity, safety-critical hydraulic levels of 
pumps and elevators, etc [4-7]. The non-ideal conditions of oil 
levels used in commercial and industrial hydraulic applications 
such as hydraulic elevators and oil pump reservoirs could lead 
to safety concerns, loss of lives, and loss of profitability. 
Monitoring these reservoirs for low oil level due to leaks is 
becoming more critical. Service companies are improving their 
predictive maintenance systems continually with more dynamic 
oil level monitoring and early leak detection mechanisms to 
prevent a catastrophic event and provide a more value-add 
maintenance service to their customers. New approaches in 
building communities include smart sensors providing real-
time monitoring and control [8-12]. Introducing some of these 
approaches, however, prove difficult specially to existing 
legacy systems as they may require physical alterations of pipes 

and tanks during the sensor integration process, resulting to 
consequential expensive safety related regulatory 
recertification. This study proposes a wireless IoT node sensor 
that requires less or no change to the structural integrity of the 
liquid reservoir. Instead of using inline sensors that may be 
installed in the pipe or in the tank, the concept instead includes 
a sensor device with an extended cable that can be easily placed 
onto the top lid of the tank that may not be safety regulated. 
Consequently, this does not require changing the structural 
integrity of the tank or the pipes. It also proposes the use of an 
industry best practice method in minimizing the reading 
variations at their roots to make the sensor highly accurate.       

II. METHODOLOGY 

This study follows the Design for Six Sigma (DFSS) 
methodology which is a proactive empirical approach to 
minimize the effects of non-linearities in components with high 
degree of performance. It uses quantifiable parameters taken 
from multiple measured data and conducting additional 
statistical work from the outset to control the factors that will 
produce consistent accurate results. It is an approach to product 
design that comes with several roadmaps.  Though not all of the 
DFSS processes in commercial applications are used, this study 
follows the Define, Measure, Analyze, Design, and Verify 
(DMADV) methodology to ensure that the key parameters are 
considered and their potential causes for defects and variations 
are minimized at their roots. The DMADV process is as 
follows: (1) Define the constraints of the problem and the 
requirement of the sensor nodes in a simulated environment, (2) 
Measure the variability and central tendency performance of the 
components, (3) Analyze and evaluate the data collected during 
the characterization of the components and compare them with 
the expected critical requirements, (4) Design and assemble a 
sensor node prototype with the use of a development kit,  
submersible sensors, and 3D printed enclosures to demonstrate 
the reading accuracy and ease of installation concept, and (5) 
Verify the design through empirical testing adjusting the 
parameters that control  the performance of the  sensors, as 
required. The output of the process is an easy-to-install optimal 
solution for use in smart remote liquid level monitor and early 
leak detection of oil in hydraulic systems. 

The conceptual framework of this study is the Input – 
Process – Output (IPO) Model to group the tasks or processes 
accordingly.  The Input consists of a (1) Temperature Sensor 
Voltage Reading and a (2) Hydrostatic Sensor Voltage Reading. 
The Output involves the display of oil temperature and level 
reading in real time through a HyperTerminal tool taken from 
the submersible liquid level and temperature sensors (Input 
sources). The Process involves the DMADV methodology as 
described above. 
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The Prototype Concept, Requirements and Test Setups 

The prototype design concept in Fig. 1 illustrates the 
budgetary industrial design (ID) of the Oil Level Monitor 
(OLM). The prototype is made of the System-On-Chip (SOC) 
development kit with Negative Thermal Coefficient (NTC) 
thermistor and hydrostatic liquid level sensors. It needs to be 
non-invasive, i.e., the node is easily installed with no change to 
the structural integrity of the tank. Instead of using inline 
sensors that may be installed in the pipe or in the tank, the 
concept instead includes a sensor device with an extended cable 
that can be easily placed onto the top lid of the tank that may 
not be safety regulated. Consequently, this does not require 
changing the structural integrity of the tank or the pipes.  

                         

 

Figure 1. Prototype Concept ID of the OLM 

Using a Nordic nRF52840 SOC as the processing unit, the 
main board of the sensor device is housed in a custom 3D 
printed enclosure. The sensor transducers at the end of the cable 
are submerged at the bottom of the tank while the monitor unit 
that houses the electronics is placed onto the lid or any structure 
outside close by the tank, as shown in Fig. 2, setup 1.  

Figure 2. Hydrostatic Liquid Level Test Setups 1 & 2 

The height level and temperature sensor readings need to 
measure a 60-inch-high tank across -15 °C to 70 °C within ±8% 
and ±5%, respectively. The sensors need to perform accurately 
and reliably within the specified thermal conditions. To test the 
performance capability within the limits of a simulated 
environment, two test setups are necessary due to the thermal 
chamber size constraints. As shown in Fig. 2, the first is the 
Full-Scale Liquid Level Setup 1 which measures at room 
temperature the reading of the submersible sensor across the 
range specified for the Hydrostatic sensor (0~60 inches). The 
second is the Thermal Characterization Setup 2, which 
measures the reading accuracy of the submersible sensor at a 
limited liquid level range from 2 to 6 inches. This is to assess 
the accuracy of the measured reading when subjected to 
temperatures from -15 °C to 70 °C.  

The equipment used is listed in Table 1 below: 

TABLE I.  OIL LEVEL MONITORING TEST EQUIPMENT 

Equipment Model No. Test Description 

Digital Multi-

meter (DMM) 

Fluke 289 Measures the temperature and 

voltage level 

Power Supply BK Precision 
9111 

Provides power source to the 
devices; used as a test input 

source to the ADC 

Thermal Chamber Tenney Junior 
Temperature Test 

Chamber 

Simulates varying thermal 
conditions. 

PC/Laptop Lenovo Monitors the liquid level and 

temperature reading of the 
device. 

Hydraulic Oil AW-32, O'Reilly ISO 32 Hydraulic oil 

2-m tall liquid level 

container, 50 

Gallon 

Norwesco White 

Vertical Storage 

Tank 41865 

Simulates hydraulic oil tank 

18" Diameter x 80" Height 

 

System Block Diagram 
The system block diagram in Fig. 3a shows the major 

components in the design. Two separate sensors are used to 
measure the temperature and the liquid level. The analog signal 
received from the sensors are then processed by the ADC to 
translate the measured data into a machine language. After the 
processor calculates the right data translation, the data is sent 
via Bluetooth and displays the information using the laptop 
HyperTerminal. 

             

(a) Wireless IoT OLM System Block Diagram 

              

(b) Process Flowchart of OLM 

Figure 3. OLM System Block Diagram & Process Flowchart 
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Firmware Process Flowchart 
The Firmware implementation process flow chart of the 

OLM is illustrated in Fig. 3b. The implementation process 
begins with a series of initializations to the hardware device. 
This is to ensure that the device is functional. Once the 
microcontroller is running properly, the ADC settings are 
initialized, ready to measure the voltage information from the 
sensors. The translation of the voltage to temperature and liquid 
level are processed by two separate ADC ports. The conversion 
result is then sent via Bluetooth and displayed to a laptop 
HyperTerminal.  

Though a more efficient wireless protocol like Wirepas may 
be used, the short-range wireless Bluetooth Technology Low 
Energy (BTLE) is employed in this study, making a more cost-
effective battery-operated proof of concept. In the final 
application, the OLM may be an IoT node of a Smartgrid 
system which passes the sensor information collected 
wirelessly to an IoT gateway for data mining and further 
analysis in the cloud. Multiple OLMs may be used to form a 
mesh wireless network, to gather liquid level data from different 
equipment. In addition, I2C based sensors such as vibration, 
temperature, accelerometer, and the likes may be added to the 
OLM to monitor the other parameters of the pumps and 
generators along with the oil level.        

III. RESULTS AND DISCUSSION 

Both the temperature and the hydrostatic sensors were 
characterized individually and then integrated into the Nordic 
SOC. The results are as follows: 

A. Optimizing the System-On-Chip ADC Setting  

How the Analog-Digital Converter (ADC) parameters are 
set affects the overall system performance of the SOC 
microcontroller, not just sensor accuracy. So, trade-offs 
between the other system functions such as wireless 
communication, memory management, hardware resource 
utilization etc. versus the ADC accuracy need to be optimized.  
In this study, the following ADC parameters were controlled: 
oversampling, acquisition time, reference voltage, and gain. 

During the temperature sensor characterization, the ADC 
reading accuracy were compared with a calibrated Digital 
Multimeter (DMM) reading measuring the sensor output. The 
DMM reading represents the expected voltage values while the 
ADC readings are the measured values.  Table 2 shows the 
difference of the expected and measured values at 25°C 
constant temperature. 

TABLE II. NTC READING RESULTS: MEASURED RESULTS VS. THE EXPECTED 

VALUE 

Expected 

Voltage 

Reading  

(V) 

Measured 

Voltage 

Reading  

(V) 

Voltage 

Reading 

Difference 

(%) 

Expected 

Temp. 

Reading  

(°C) 

Measured 

Temp. 

Reading  

(°C) 

Temp. 

Reading 

Difference 

     (%) 

1.6476 1.1997 27.1846  25.1000 38.2648 52.4494 

1.6474 1.1997 27.1757 25.2000 38.2648 51.8444 

1.6476 1.1997 27.1846 25.1000 38.2648 52.4494 

 

The results show greater than 27% difference between the 
thermistor expected and measured voltage readings. This 
translates to a temperature inaccuracy reading by more than 
50% which is outside the specified tolerance of ±5%. The ADC 
settings are as follows: an oversampling of 32 bit, an acquisition 
time of 3 uS, reference voltage of 0.6V, and gain of 0.5. These 
require adjustments. After several tests, the most optimal 
settings are the oversampling parameter is 64-bit, the 

acquisition time at 5 uS, the reference voltage at 0.6V, and the 
gain at 0.16. The result is shown in Table 3. 

TABLE III. NTC READING RESULTS: ADJUSTED ADC SETTING VS. THE 

EXPECTED VALUE 

These settings produced a very high level of accuracy, 
showing a temperature difference below 1%, which is within 
the ±5% tolerance requirement. The height ADC port setting 
used the same values considering the trade-offs of the overall 
system performance.  

The ADC reading error includes the sensor error in a 
combined tolerance stack. Therefore, the error contribution of 
the sensor needs to be ascertained separately from the error 
contributed by the ADC to tightly control the tolerance stack. 

B. Temperature Sensor Characterization 

The temperature sensor used in this study is a 10K NTC 
thermistor - A1004BT22P0, from TE connectivity. Using a 
voltage divider circuit, a voltage reading is measured by the 
ADC input as the thermistor varies its resistance when the 
temperature changes.  

The voltage measured, Vout, corresponds to the equation 
shown as: 

Vout =  Vcc
RTH

(R+RTH)
  (1) 

Where Vout is the output voltage measured by the ADC 
input port, R is the constant 10K 1% resistor, VCC is the supply 
voltage, and RTH is the thermistor resistance at a certain 
temperature. Table 4 shows the samples of the calculated Vout 
for the corresponding resistance and temperature of the NTC 
from the datasheet: 

TABLE IV. NTC RESISTANCE VS. CALCULATED VOLTAGE 

Temperature 

(°C) 

Resistance 

() 

Calculated Voltage 

(Vout) 

125 340.6 0.10869582 

100 678.4 0.20964939 

50 3601 0.87370782 

0 32650 2.52626026 

-40 336050 3.20463806 

 

However, one of the main challenges with using a 
thermistor is dealing with the thermal reading inaccuracy when 
calculating the temperature from the measured resistance value. 
Due to the nonlinear resistance-temperature (R-T) 
characteristics of the thermistor, inaccuracies are introduced at 
different points of the curve within the range.  

To obtain a closer approximation of the thermistor 

temperature gauging, NTC uses the Steinhart-Hart equation 

during the conversion. It is regarded as the most precise 

empirical method for modeling the R-T characteristics of 

thermistors to a high degree of accuracy across the operational 

temperature range of the sensor. The equation is expressed in T 

where T is in degree Kelvin. 

Steinhart - Hart Equation: 
 

Expected 

Voltage 

Reading  

(V) 

Measured 

Voltage 

Reading  

(V) 

Voltage 

Reading 

Difference 

(%) 

Expected 

Temp. 

Reading  

(°C) 

Measured 

Temp. 

Reading  

(°C) 

Temp. 

Reading 

Diff 

     (%) 
1.6467 1.6471 0.3427 25.1000 25.0810 0.6564 

1.6460 1.6462 0.332 25.1000 25.1053 0.5597 

1.6461 1.6453 0.3259 25.1000 25.1296 0.5597 
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I

T
=A+B(ln R)+C(ln R)3  (2) 

Where T is the temperature in degree Kelvin, LnR is the 
natural logarithm of the measured resistance, and A, B, C are 
constants. The A, B, C constants are calculated based on the 
Temperature vs Resistance curve of the NTC datasheet.  

I

T1
=A+B(ln R1)+C(ln R1)3  (3) 

I

T2
=A+B(ln R2)+C(ln R2)3  (4) 

I

T3
=A+B(ln R3)+C(ln R3)3  (5) 

With,  

T1 = -40°C; at resistance (R1) 336050  of 10k NTC  

T2 = 25 °C; at resistance (R1) 10000  of 10k NTC 

T3 = 125°C; at resistance (R1) 340.6  of 10k NTC  
 

Solving for T using these three equations and three unknowns, 

we get the value of the constants: 
 

A = 0.001129107098100 

B = 0.000234126597883 
C = 0.000000087702836 
 

The Steinhart-hart equation with the constants above is 
encoded in the software to be used in the voltage-to-temperature 
conversion. The significance of this equation, along with the 
optimized ADC settings, is seen during the statistical analysis.  

C. Liquid Level Hydrostatic Sensor Characterization 

WNK8010-TT 1.5-S2-C2-05-D5 is the sensor used to 
measure the liquid level. The device voltage output 
characteristic range is 0.33V (the lowest level at 0 m) to 2.97V 
(the highest level at 1.5m / 60 inches). The sensor tolerance 
specification is 0.5% Full Scale (FS). This means that the 
reading accuracy is within ±0.5% of the full-scale reading. At 
60-inch, the ±0.5% FS allowable error is ±0.30 inch across the 
range. 

The liquid level is determined by the formula provided by 
the hydrostatic sensor manufacturer, as shown below: 

 

LL=

(VR-VMIN)

(VMAX-VMIN)
*(HMAX-HMIN)

SG
  (6) 

 

Where LL is the Liquid Level, VR is the Voltage reading, 
Vmin is the minimum voltage output of the sensor, Vmax is the 
maximum voltage output of the sensor, Hmax is the maximum 
sensor height capability, Hmin is the sensor’s minimum height 
capability, and SG is the specific gravity (SG) constant of the 
liquid medium. SG value changes depending on what liquid 
medium is used. SG for water is 1 while the SG varies for oil 
depending on the type and Manufacturer’s hydraulic oil blend. 
SG is also a factor to control a much tighter reading accuracy. 
AW-32 Hydraulic Fluid (ISO 32) from O Reilly is used in this 
study. The full range (0-60 inch) height level is characterized 
using the Test Set-up 1.  Some of the test readings are shown in 
Table 5. 

 TABLE V. HYDRO SENSOR READING RESULTS VS. THE EXPECTED READING 

 

The sensor performs within the manufacturer’s tolerance 
specification. Due to safety concerns of handling hydraulic 
fluid at a large volume, water is used in taking the above 
measurements. However, a hydraulic fluid is used during the 
thermal characterization in Test set-up 2 (low volume). 

D. Hydrostatic Sensor Issues due to Temperature Variations 

The thermal characteristic of the hydrostatic sensor is 
assessed to determine the reading consistency and accuracy at 
varying thermal conditions. Three height levels were selected 
using Test Set-up 2. These are: Height A at 6 inches, Height B 
at 4 inches, and Height C at 2 inches, taken across the 
temperature requirement from -15 to 70 °C. Table 6 shows three 
of the Height A data points taken from the whole temperature 
range: 

TABLE VI.  HEIGHT A SENSOR READINGS AT DIFFERENT TEMPERATURE 

LEVELS 

Height 

A  

(in.) 

Temperature 

Level  

(°C) 

Voltage 

Reading  

(V) 

Height 

Reading  

(in.) 

Error 

from 

Height A 

(%) 

6 70 0.4734 4.2934 28.44% 

6 25 0.5325 6.0383 0.64% 

6 -15 0.4348 3.1266 47.89% 
 

Notice that at temperatures 70°C and -15°C more than 8 % 
error occurred from the desired height. This does not meet the 
specification. Similar behavior occurred during the 
characterization of Heights B and C with even higher 
inaccuracies. These show that the thermal variations affect the 
sensor performance.  

E. Applying the Correction Factor, CF 

By reviewing the graphs, a trend is observed.  Fig. 4 below 
shows the trend of the three height levels vs Temperature. 

 
Figure 4. Point A, B, and C, result curves at -15°C to 70 °C. 

By aligning Heights B and C graphs to Height A, a common 
curve is derived. From this curve, a trendline is determined to 
formulate the correction factor, CF. Taking the average of the 
data points on the curve, the corresponding characteristic 
equation is derived: 

γ=3.65E-12x6-6.98E-10x5+4.76E-8x4-9.9387E-7x3-6.1284E-5x2+3.08E-3x+0.4912  (7)  
 

Where x is the temperature level read and y is the height level 
calculated at that temperature. This is illustrated in Figure 5a. 

 

Since the horizontal tangent line is the highest point of the 
curve (i.e., the closest value to the expected height level), by 
taking the first derivative, the equation of the tangent line is 
derived: 

γ'=2.1877E-11x5-3.492E-9x4+1.9054E-7x3-2.982E-6x2-1.226E-3x+0.00308    (8) 

 

Expected 

Height Level 

(in.) 

Expected 

Height  

Min. Level 

(in.) 

Expected 

Height Max. 

Level  

(in.) 

Hydro Sensor 

Reading 

(in.) 

Results 

0.1074 -0.19 0.41 0.27 In Range 

12.7461 12.45 13.05 12.97 In Range 

45.3405 45.04 45.64 45.64 In Range 
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Where x is the temperature level read and y' is the normal height 
level to the curve, i.e., the highest point of the curve at that 
temperature. This point is the closest approximation to the 
expected height level. 

The steps then to determine the final corrected levels are: 

a) Use the trend line equation to determine the liquid level 

(y) at a given temperature (x). This is the initial height 

reading. 

b) Use the normal horizontal line equation to determine the 

highest point of the curve (y') from (x). 

c) Take the difference of the trend line result (y) and the 

normal horizontal line (y'). This is the correction factor. 

d) Add the correction factor to the initial reading (y) from 

step (a). This is now the final corrected level. 
 

Fig. 5b shows the measured and new adjusted heights for 

Height A, 6-in. 

 
(a) Average Curve of All Three Levels with the Trendline Equation and 

Horizontal Tangent Line 

 
Height A Test Result with and without CF. 

 

(b) Measured (no CF) and adjusted height (with CF) vs. the target HA = 6” 
(Horizontal Tangent Line) Test Result. 

Figure 5 Average Curves and Trendline from the Three height levels 

Tables 7, 8, & 9 summarize the improvements when applying 

the CF to the measured data and optimizing SG: 

TABLE VII. HA = 6” SENSOR READING IMPROVEMENT (NO CF VS WITH CF) 

Temperature 

(°C) 

Error from 6-in. (no 

CF) % (Reading, in.) 

Error from 6-in. (with CF) 

% (Reading, in.) 

70 28.44% (4.29 in.) 2.62% (5.84 in.) 

25 0.64% (5.96 in.) 0.64% (5.96 in.) 

-15 47.89% (3.13 in.) 3.40% (5.80 in.) 

TABLE VIII. HB = 4” SENSOR READING IMPROVEMENT (NO CF VS WITH CF) 

Temperature 

(°C) 

Error from 4-in. (no 

CF) % (Reading, in.) 

Error from 4-in. (with CF) 

% (Reading, in.) 
70 47.78% (2.09 in.) 1.18% (3.95 in.) 

25 0.76% (Reads at 3.97 in.) 0.77% (3.97 in.) 

-15 66.68% (Reads at 1.33 in.) 0.06% (3.99 in.) 

 

TABLE IX. HC = 2” SENSOR READING IMPROVEMENT (NO CF VS WITH CF) 

Temperature 

(°C) 

Error from 2-in. (no 

CF) % (Reading, in.) 

Error from 2-in. (with 

CF) % (Reading, in.) 
70 28.44% (1.43 in.) 4.27% (1.91 in.) 

25 0.64% (1.99 in.) 5.36% (1.89 in.) 

-15 47.89% (1.04 in.) 11.26% (1.77 in.) 

 
The inaccuracy is now reduced to well within the 8% 

requirement except, the -15°C reading at the 2-in. level still 
shows an error greater than 8%, even though the readings 
generally improved. The reasons for this behavior are: 1) At 0 
or near minimum level, the noise margin of the sensor is also 
nearing its noise floor. It is noticed that the sensor accuracy 
degrades from about the 3-in. level down. 2) At low 
temperature, the oil viscosity increases, changing from liquid to 
gel below around -8 °C and behaves as a thicker fluid.   

F. Statistical Treatment  

Performance Capability (Cp) and Capability Index (Cpk) 
The DFSS Performance Capability (Cp) and Capability 

Index (Cpk) are objective statistical measurements to determine 
if the design is meeting the requirement. The Performance 
Capability is the ratio of the required versus the actual 
performance of the sensor. The Performance Capability Index 
(Cpk) is a measure of the ability of the sensors to produce 
consistent results between the permissible specified spread (i.e., 
the total tolerance specification) and the actual spread 
(Performance Limit). A Cpk has Upper (Cpk USL) and Lower 
Limits (Cpk LSL) for off-target variations.  These limits are 
calculated values to signify if the variations of the collected data 
are centered between the specified limits.  It is used to estimate 
how close the sensor performance is to a given target and how 
consistent the sensor measurement is around the average 
performance. Cp provides the overall idea of how capable the 
sensor performances are in meeting the requirement while Cpk 
defines how centered the measured readings are within the 
specified range. The controlling factors may be adjusted to 
come up with the value of Cp > 1, which demonstrates a more 
than capable performance within the specification. A Cp = 1 
means the performance is capable with no margin and requires 
tight control. A Cp < 1 indicates that the performance capability 
spread is greater than the specification which means poor 
capability. A Cpk of negative value means that the performance 
capability is outside the specified limits, drifting either at the 
upper or lower end.  A Cpk of 1 means that the device is just 
touching the nearest edge of the limits not having enough 
clearance and may likely fail.  A Cpk of 2 (6 σ) means that there 
is a large amount of clearance. Whichever limit is of the lower 
value means that the design control shifted in that direction and 
highly likely the performance will fail at that limit.  Therefore, 
the lower of the two values is noted, design adjustments are 
made making trade-offs accordingly to shift the performance 
toward the center of the limits. A Cpk value greater than 1.33 
(4 σ) is desirable in this study. Fig. 6 below summarizes the Cp 
and Cpk concept and relationships.  

                     

                  

Good Performance Capability 
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      Poor Performance Capability 

                       

 

Figure 6. Cp and Cpk Correlations 

In this study, the specification for the height and 
temperature readings are ±8% and ±5%, respectively. By using 
the Cp / Cpk analysis, the adjustments applied to the controlling 
parameters made the performance meet the specification and 
improved them even further.  

 

1. Temperature Monitor Performance Capability 
Prior to optimizing the ADC and adding the Steinhart-Hart 

(S-H) equation, the temperature readings were taken across the 
required range. The statistical analysis shows Cp and Cpk equal 
to 0.28 resulting to a distribution curve that is well out of the 
specification.  The measured data drifts more than 50% of the 
expected value to the right of the Upper Specification Limit 
(USL), as illustrated in Fig. 7a.   

 
(a) Distribution Curve: Pre-optimized ADC setting, without S-H equation 

 

 
(b) Distribution Curve: Post-optimized ADC Setting, with S-H equation 

Figure 7. Distribution Curves for ADC Settings, with & without S-H equation 

After applying the Steinhart-hart equation and adjusting the 
ADC settings, the Cp and Cpk greatly improved within the 
specification of ±5%. Since there is enough room for 
improvement, the data was re-evaluated using a tighter 
specification limit. The optimized result shows that the 
temperature sensor can perform well within ±0.25% tolerance 
limits as shown in Figure 7b. 

 

2. Liquid Level Monitor Performance Capability 
 

The Performance Capability analyses were also performed 
when determining the CF at Heights A (6”), B (4”), and C (2”). 
Considering Height A experiment for example, 86 data points 
from -15 to 70 °C were taken. With no CF, the Cp and Cpk are 
equal to 0.37, in which case the distribution curve is out of 
specification, is not centered and drifting more to the right side 
of the limits, as illustrated in Fig. Figure 8a. 

        
 

(a) Distribution Curve results of Height A without the correction factor at 8% 

specification limits 

 

   
(b) Distribution Curve results of Height A with the correction factor compared 

with 8% and 5% specification limits 

Figure 8. Distribution Curve Results of Height A (6 inches) 

     After adjustments were made to SG, the ADC settings, and 

adding the equation for the CF in the code, the performance 

capability improved with Cp and Cpk equal to 2.74 best case, 

with SG as the fine-tuning parameter. This improvement 

translates to a mean from 5.2115 inches to 6.0281 inches, a 
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much closer value to 6 inches. With this configuration, the 

system performance is very capable of meeting the ±8% 

design specification. Moreover, a much tighter specification of 

±5% is possible, resulting in Cp and Cpk equal to 1.71, as 

illustrated in Fig. 8b. 

G. Full Scale 1.5m (60 IN) Hydrostatic Sensor Test  

Finally, after all the optimization and correction factors are 
applied in the code, a full-scale reading verification test was 
conducted across the range from 0 to 60 inches with water. The 
sample data of the test results in Table 10 show the OLM height 
readings meet the ±8% specification limits and the ±0.5% FS 
tolerance (±0.30 inch) of the hydrostatic sensor. 

TABLE X. FULL-SCALE MEASUREMENT AT ROOM TEMPERATURE SAMPLE 

DATA 

 
DFSS Performance Capability processes and analyses 

effectively aid in determining the optimal settings for the ADC 
parameters, the specific gravity (SG) values, and the derivation 
of the correction factors for the height and temperature 
equations. 

IV. RECOMMENDATION AND CONCLUSION 

In this study, there are factors in the design that affect the 
accuracy of the readings. They are controlled to achieve the 
optimal solution. These factors are: 1) the microcontroller ADC 
settings, 2) the non-linearity effects of the thermal variations to 
the hydrostatic level sensor, 3) the non-linearity effects of the 
R-T characteristics of the thermistor, and 4) regulating the 
specific gravity (SG) value to achieve a more precise liquid 
level reading. With the use of the DFSS Cp / Cpk statistical 
analysis, the sensor readings were highly improved by 
calibrating the microcontroller configurations considering the 
trade-offs between ADC conversion accuracy versus the overall 
hardware resource performance. A correction factor CF is 
added in the hydrostatic sensor conversion code to compensate 
for the thermal drifts, reducing the errors across the temperature 
range meeting and even performing better than the 8% 
specification. Similarly, a more precise empirical model, the 
Steinhart-hart equation, was added in the voltage-to-
temperature conversion code of the temperature sensor, which 
improved the error to less than 1%. The efficacy of these 
adjustments was evident as the sensors’ Cp / Cpk values highly 
improved. However, at the 2-in. level and below, the 
hydrostatic sensor performance is limited due to the noise 
margin constraints near or at minimum level and the change of 
oil viscosity at low temperature. It is recommended to further 
characterize the sensor at low level and low temperature 
applications. Machine learning was considered to improve the 
accuracy of the sensor readings, but the processing power 
required to manage the computing and communication tasks is 
too high for a battery-operated device. Further study on 
managing non-linear behavior of sensors in a low energy 
battery operated environment using machine learning is a 
logical next step and highly recommended. 

Moreover, water is used instead of oil as the medium for the 
full-scale (0-60 inch) verification testing. Proper material 
handling for health and safety is required when working with 

hazardous material in large volumes. In addition, due to the size 
of the container at large volume, full-scale test is done at room 
temperature only (25~27 °C) as a large thermal chamber that 
fits the container is not available. No temperature tests from -
15 to 70 °C were conducted in this study at levels greater than 
6 inches due to the size limitation of the available thermal 
chamber. It is recommended to test the maximum height against 
temperature when a suitable setup is available.  

By not using inline piping sensors so as to make no changes 
to the tank or pipe structural integrity, the study concludes that 
a wireless mixed-signal SOC with submersible hydrostatic and 
NTC temperature sensors enclosed in a housing mounted on top 
of the tank is a viable solution for a non-invasive IoT oil level 
monitor. In addition, what this study reveals, is that the DFSS 
Performance Capability (Cp) and Capability Index (Cpk) 
statistical analysis from the outset is an effective method to 
determine the appropriate settings in compensating for the non-
linearity effects of the sensors and obtain the most optimal 
reading performance.  
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Height  

Level 

 

(in.) 

Required 

Min.  

-8%   

(in.) 

Required  

Max. 

+8% 

(in.) 

Sensor  

Min. 

Spec. 

(in.) 

Sensor  

Max. 

Spec. 

(in.) 

OLM 

Height 

Reading 

(in.) 

Result 

4.00 3.68 4.32 3.70 4.30 4.01 In range 

25.00 23.00 27.00 24.70 25.30 25.03 In range 

60.00 55.20 64.80 59.70 60.30 60.19 In range 
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