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Abstract— This paper presents a stochastic optimization 

program for multi-objective cost and environmental pollution 

optimization in a network over a one-year time horizon. In this 

context, the system operator, in addition to planning equipment 

utilization, mitigates the effects of existing fluctuations in the 

uncertain input parameters by employing demand response 

programs. Random functions are used to model the oscillatory 

behavior of wind turbine speed. Furthermore, planning is 

performed for different seasons of the year to examine the 

sensitivity of the obtained response to weather conditions. To 

simulate the proposed model, a mixed-integer linear 

programming (MILP) approach is employed, and the GAMS 

software is used to solve it. Considering uncertainty in wind 

turbine generation, the proposed model is applied to a test 

microgrid consisting of multiple energy carriers. Simulation 

results demonstrate the impact of demand response programs 

while increasing the cost of planning due to the consideration of 

uncertainty in the system. 

Keywords— energy hub, demand response, multi-objective 

optimization, stochastic programming. 

I. INTRODUCTION 

With the restructuring of the electricity industry, networks 
consisting of multiple energy carriers have entered this field, 
referred to as energy hubs. A microgrid comprising multiple 
energy carriers includes a set of small-scale consumers and 
producers that mainly interact with the distribution network at 
a low voltage level. In this microgrid, not only electrical 
energy but also other energy carriers exist alongside 
consumers and suppliers. For example, thermal loads, cooling, 
heating, and even natural gas-consuming equipment may exist 
in a microgrid consisting of multiple energy carriers. In 
addition to the mentioned equipment, energy storage systems 
can also serve as another energy source [1]. 

From a research perspective, the topic of planning and 
operating a microgrid consisting of multiple energy carriers 
involves both long-term and short-term aspects. In the long-
term phase, the primary objective is to determine the optimal 
capacity of the desired equipment for investment, while in the 
short-term phase, the goal is to determine the optimal 
operating point for each of the equipment in the energy hubs. 
Additionally, proper interaction with the electric power 
distribution network and gas distribution network for 
purchasing energy from or selling it to the upstream network 
is a significant part of operating a microgrid consisting of 
multiple energy carriers [1]. 

In recent years, the optimal operation of multi-energy 
systems, or energy hub systems, has been one of the key topics 
in power system planning [2]. In such conditions, different 

energy sources, such as combined heat and power units, are 
utilized to enhance the efficiency of various energy carriers 
[3]. Furthermore, thermal energy sources in the generation 
cycle, such as steam boilers, can be optimally utilized to meet 
thermal demand [4]. In addition to the mentioned renewable 
energy sources, renewable generation units can be combined 
in energy hub systems to answer various load demands [1]. It 
should be noted that the use of thermal sources and fossil fuel-
consuming devices in energy hub systems has turned the issue 
of pollution emissions into a significant challenge for system 
operators [5]. 

In recent years, extensive researches have been carried out 
regarding energy-related topics. A mathematical model for 
optimizing the exploitation of an intelligent energy network 
using energy hubs is presented in [6]. This model utilizes 
hydrogen as an energy carrier and aims to investigate the 
advantages of hydrogen production in a smart energy grid. 
The placement of power plants in an energy system connected 
to natural gas and electricity, in the form of conversion hubs, 
including converters for electricity-to-gas and renewable 
energy sources, is examined in [7]. References [8] and [9] 
present a new model for energy hubs considering hydrogen as 
an energy carrier within the hubs. Reference [10] investigates 
the optimization of a multi-carrier energy hub system and 
determines suitable investments for generation units, 
transmission, and furnaces. Considering natural gas and the 
simultaneous production of electricity and heat, reference [11] 
models a residential building as an energy hub, due to various 
heat and electrical appliances. Daily energy consumption in 
regional buildings has been optimized using the concept of 
energy hubs in reference [12]. 

Reference [13] examines the optimal operation of multi-
carrier energy systems in the presence of wind farms, thermal 
and electrical storage systems, the electricity market, and the 
heat energy market. The impact of distributed generation, 
uncertainties, demand, price, and wind on the operational 
costs and reliability of energy hubs is studied in reference [14].  

Some researchers have investigated various models for 
planning and operating energy systems, some of which are 
mentioned in the following. In [15], the reliability of an 
electric energy system without considering interactions with 
other energy carriers is presented using a linear model of AC 
load flow equations. In [16], by employing DC load flow 
equations in the power grid and a detailed model of the natural 
gas transmission network, the coordination between 
electricity and natural gas networks in the optimal operation 
of gas-fired power generation units to enhance the 
performance of energy systems is studied. A model is 
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presented in [17] to examine the energy system's security in 
response to demand and the effects of the natural gas network 
on the optimal operation of electricity and natural gas systems 
without considering their mutual interaction. Various models 
of energy carrier integration for the optimal operation of 
multi-carrier energy systems are presented in [18-21]. To 
improve the speed of load distribution problem-solving in the 
power grid, a linear model of optimal energy distribution in 
electricity and natural gas networks using the concept of 
energy hubs is introduced in [18]. In [19], a model is proposed 
for the optimal operation of multi-carrier energy systems by 
utilizing renewable energy sources, combined heat and power 
units, and the behavior of electric vehicle owners in providing 
storage services. A resilient optimization method for optimal 
energy management in multi-carrier systems with 
uncertainties in price, energy demand, and equipment 
efficiency within energy hubs is presented in [20]. 

Although these systems are capable of providing various 
services such as electricity, heating, and cooling, their 
emission of pollution is a challenging issue. Since improving 
each of the cost and pollution functions has a negative impact 
on the other function, it is necessary to find a solution that 
creates a balance. In this paper, a multi-objective stochastic 
approach is presented to optimize the cost and environmental 
pollution during the planning horizon of one year. In these 
conditions, the system operator, in addition to planning the 
operation of equipment, will mitigate the effects of existing 
fluctuations in the system's input parameters using demand 
response programs. Random functions are used to model the 
oscillatory behavior of wind turbine speed. Additionally, to 
examine the sensitivity of the obtained response to weather 
conditions, the planning is modeled for each year in four 
different seasons. The proposed model is implemented on a 
microgrid consisting of multiple energy carriers, and 
comparative results are provided to validate the effectiveness 
of the proposed method. 

Section 2 of this article addresses the formulation of the 
energy hub problem. In section 3, a case study is presented to 
investigate the effectiveness of the proposed method, while 
the results are presented in section 4.  

II. ENERGY HUB PROBLEM FORMULATION  

The examined energy hub structure in this paper is 
illustrated in Fig. 1. The energy inputs consist of four systems: 
water, electricity, gas, and wind energy, and the system 
accommodates various electrical, thermal, and gas loads. The 
equipment in the hub is divided into two categories: thermal 
and electrical. They include a boiler, a combined heat and 
power (CHP) generation unit, a thermal energy storage system 
(TEES), and an electrical energy storage system (EESS), 
respectively. The input electricity is supplied to the energy 
hub from the grid and wind power plant through transformers 
and converters. It should be noted that the main programmable 
loads in this energy hub are electrical and thermal loads. 
Furthermore, by adding the cooling load, three devices of the 
heater, absorption chiller (AC), and electrical heat pump 
(EHP), are considered in the proposed model. 

To solve the multi-objective problem, the Epsilon 
Constraint method is utilized. Considering the cooling load 
and the one-year planning horizon, four types of seasonal load 
curves are considered for electrical, heating, and cooling 
loads. Uncertainty is also taken into account in the planning. 

Gas

Electrical Load

HeaterBoiler

Grid
Chiller

Heating Load

Cooling Load

CHP

EES

EHP

TES

 
Fig. 1. Studied energy hub system 

A. Optimization Objective Functions 

The main model of the energy hub in Fig. 1 is formulated 
as a linear model that can be solved using the CPLEX solver. 
In this study, two objective functions are considered: 
minimizing the planning cost and minimizing the emission 
pollution. The operating cost includes the cost of purchasing 
electricity from the grid, the cost of using wind energy, the 
cost of using electrical and thermal energy storage systems, 
the cost of using demand response programs, profit (or cost) 
from energy sales (or purchases), water consumption cost, and 
gas consumption cost by the CHP unit and boiler, as shown in 
the following equation: 

𝛷1 = 𝑐𝑜𝑠𝑡 =  ∑ 𝜆𝑡
𝑒𝑃𝑡

𝑒 + 𝜆𝑤𝑖𝑃𝑡
𝑤𝑖 + 𝜆𝑠

𝑒(𝑃𝑡
𝑐ℎ,𝑒 + 𝑃𝑡

𝑑𝑖𝑠,𝑒) +𝐻
𝑡

𝜆𝐷𝑅(𝑃𝑡
𝑒,𝑠ℎ𝑑𝑜 + 𝑃𝑡

𝑒,𝑠ℎ𝑢𝑝
) + 𝜆𝑡

𝑒(𝑃𝑡
𝑐ℎ,𝑒 − 𝑃𝑡

𝑑𝑖𝑠,𝑒) +

𝜆𝑔𝑔𝑡
𝐶𝐻𝑃 + 𝜆𝑔𝑔𝑡

𝐵 + 𝜆𝑠
ℎ(𝑃𝑡

𝑐ℎ,ℎ + 𝑃𝑡
𝑑𝑖𝑠,ℎ) (1) 

Furthermore, the overall system pollution, which includes 
pollution from CHP, boiler, gas consumption, and electricity 
consumption, is considered according to the following 
equation: 

𝑀𝑖𝑛 𝛷2 = 𝐸𝑚 = 𝐸𝐹𝐶𝐻𝑃 . 𝑔𝑡
𝐶𝐻𝑃 + 𝐸𝐹𝐵 . 𝑔𝑡

𝐵 + 𝐸𝐹𝐿 . 𝑔𝑡
𝐿 +

𝐸𝐹𝑁𝐸𝑇 . 𝑝𝑡
𝑁𝐸𝑇  (2) 

B. Constraints 

 Considering the energy hub and its associated equipment, 
the imposed constraints can be broadly categorized into four 
main categories: electrical constraints, thermal constraints, 
cooling constraints, and gas-related constraints. The following 
equation represents the electrical energy balance modeled in 
the energy hub. 

𝑝𝑡
𝑒𝑙 + 𝑝𝑡

𝑠ℎ𝑢𝑝
− 𝑝𝑡

𝑠ℎ𝑑𝑜 =  𝐴𝑁𝑒𝑡 . 𝜂𝑒𝑒
𝑇 . 𝑝𝑡

𝑒 + 𝐴𝑊𝐼𝑁𝐷 . 𝜂𝑒𝑒
𝐶𝑂𝑁 . 𝑝𝑡

𝑤𝑖 +

𝐴𝐶𝐻𝑃 . 𝜂𝑔𝑒
𝐶𝐻𝑃 . 𝑔𝑡

𝐶𝐻𝑃 + (𝑝𝑡
𝑑𝑖𝑠,𝑒 − 𝑝𝑡

𝑐ℎ,𝑒) − 𝑝𝑡
𝐻𝑃,𝑒 − 𝑝𝑡

𝐸𝐶,𝑒
 (3) 

 Furthermore, the limit of purchasing electrical power 
constraint due to the transformers and transmission lines is 
represented by the following equations: 

𝑝𝑒
𝑚𝑖𝑛 ≤ 𝑝𝑡

𝑒 ≤ 𝑝𝑒
𝑚𝑎𝑥 (4) 

𝜂𝑒𝑒
𝑇 . 𝑝𝑡

𝑒 ≤ 𝑝𝑒
𝑇 (5) 

 The power generation of the wind turbine is taken into 
account based on the wind speed using the following equation: 

𝑝𝑡
𝑤𝑖 =  {

0                                             𝑤 < 𝑤𝑐𝑖

                       𝑝𝑟                                   𝑤𝑐𝑖 ≤ 𝑤 ≤ 𝑤𝑟                     

𝑝𝑟(𝑧 − 𝑦. 𝑤(𝑡) + 𝑥. 𝑤2(𝑡))    𝑤𝑟 ≤ 𝑤 ≤ 𝑤𝑐𝑜          
0                                             𝑤 ≥ 𝑤𝑐𝑜

 (6) 
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 Equations (7) to (10) define the constraints related to the 
energy storage in the battery, considering the charging and 
discharging efficiency, minimum and maximum battery 
charge levels, system losses based on the battery charge level, 
and minimum and maximum battery charge rates. 

𝐶𝑡
𝑠𝑡,𝑒 = 𝐶𝑡−1

𝑠𝑡,𝑒 + 𝑃𝑡
𝑐ℎ,𝑒 . 𝜂𝑐ℎ

𝑒 − 𝑃𝑡
𝑑𝑖𝑠,𝑒 𝜂𝑑𝑖𝑠

𝑒⁄ − 𝑃𝑡
𝑙𝑜𝑠𝑠 (7) 

𝛼𝑚𝑖𝑛
𝑒 . 𝐶𝑐

𝑠𝑡,𝑒 ≤ 𝐶𝑡
𝑠𝑡,𝑒 ≤ 𝛼𝑚𝑎𝑥

𝑒 . 𝐶𝑐
𝑠𝑡,𝑒

 (8) 

𝑃𝑡
𝑙𝑜𝑠𝑠,𝑒 = 𝛼𝑙𝑜𝑠𝑠

𝑒 . 𝐶𝑐
𝑠𝑡,𝑒

 (9) 

𝛼𝑚𝑖𝑛
𝑒 .𝐶𝑐

𝑠𝑡,𝑒.𝐼𝑡
𝑐ℎ

𝜂𝑐ℎ
𝑒 ≤ 𝑝𝑡

𝑐ℎ,𝑒 ≤
𝛼𝑚𝑎𝑥

𝑒 .𝐶𝑐
𝑠𝑡,𝑒.𝐼𝑡

𝑐ℎ

𝜂𝑐ℎ
𝑒  (10) 

 The set of (11) to (14) represents the status of transferable 
loads in the demand response program, the control of the rate 
of load growth or reduction within a time step to make a 
balance in the transferred loads over the entire time interval.  

𝑃𝑡
𝑒𝑙,𝐷𝑅𝑃 = 𝑃𝑡

𝑒𝑙 + 𝑃𝑡
𝑠ℎ𝑢𝑝,𝑒

− 𝑃𝑡
𝑠ℎ𝑑𝑜 (11) 

0 ≤ 𝑃𝑡
𝑠ℎ𝑢𝑝,𝑒

≤  𝐿𝑃𝐹𝑠ℎ𝑢𝑝,𝑒 . 𝑃𝑡
𝑙 . 𝐼𝑡

𝑠ℎ𝑢𝑝,𝑒
 (12) 

0 ≤ 𝑃𝑡
𝑠ℎ𝑑𝑜,𝑒 ≤  𝐿𝑃𝐹𝑠ℎ𝑑𝑜,𝑒 . 𝑃𝑡

𝑙 . 𝐼𝑡
𝑠ℎ𝑑𝑜,𝑒

 (13) 

∑ 𝑃𝑡
𝑠ℎ𝑢𝑝,𝑒𝐻

𝑡 = ∑ 𝑃𝑡
𝑠ℎ𝑑𝑜,𝑒𝐻

𝑡  (14) 

 Equations (15) to (19) pertains, respectively, to the thermal 
energy balance in the energy hub, the level of energy stored in 
the thermal storage, the losses of the thermal storage system, 
the limitation on the level of stored energy, and the hourly 
charging and discharging rates. 

𝑃𝑡
ℎ = 𝜂𝑔ℎ

𝐵 . 𝑔𝑡
𝐵 + 𝐴𝐶𝐻𝑃 . 𝜂𝑔ℎ

𝐶𝐻𝑃 . 𝑔𝑡
𝐶𝐻𝑃 + (𝑝𝑡

𝑑𝑖𝑠,ℎ − 𝑝𝑡
𝑐ℎ,ℎ) +

𝑝𝑡
𝐻𝑃,𝑐 . 𝑝𝑡

𝐴𝐶,ℎ
 (15) 

𝐶𝑡
𝑠𝑡,ℎ = 𝐶𝑡−1

𝑠𝑡,ℎ + 𝑝𝑡
𝑐ℎ,ℎ. 𝜂𝑐ℎ

ℎ − 𝑝𝑡
𝑑𝑖𝑠,ℎ 𝜂𝑑𝑖𝑠

ℎ⁄ − 𝑝𝑡
𝑙𝑜𝑠𝑠,ℎ

 (16) 

𝑃𝑡
𝑙𝑜𝑠𝑠,ℎ = 𝛼𝑙𝑜𝑠𝑠

ℎ . 𝐶𝑐
𝑠𝑡,ℎ

 (17) 

𝛼𝑚𝑖𝑛
ℎ .𝐶𝑐

𝑠𝑡,ℎ
.𝐼𝑡

𝑐ℎ,ℎ

𝜂𝑐ℎ
ℎ ≤ 𝑝𝑡

𝑐ℎ,ℎ ≤
𝛼𝑚𝑎𝑥

ℎ .𝐶𝑐
𝑠𝑡,ℎ

.𝐼𝑡
𝑐ℎ,ℎ

𝜂𝑐ℎ
ℎ  (18) 

𝛼𝑚𝑖𝑛
ℎ 𝐶𝑐

𝑠𝑡,ℎ𝐼𝑡
𝑑𝑖𝑠,ℎ𝜂𝑑𝑖𝑠

ℎ ≤ 𝑝𝑡
𝑑𝑖𝑠,ℎ ≤ 𝛼𝑚𝑎𝑥

ℎ 𝐶𝑐
𝑠𝑡,ℎ𝐼𝑡

𝑑𝑖𝑠,ℎ𝜂𝑑𝑖𝑠
ℎ  (19) 

Since cooling loads also exist in the energy hub, 
corresponding cooling constraints need to be considered. 
Therefore, constraints related to achieving thermal balance, 
the absorption chiller capacity constraint, the heat pump 
capacity constraint, cooling limitations, and the heat 
production limitation of the heat pump are incorporated 
according to the following equations: 

𝑃𝑡
𝑐 = 𝜂ℎ𝑐

𝐴𝐶 . 𝑝𝑡
𝐴𝐶,ℎ + 𝑝𝐻𝑃,𝑐 + 𝜂ℎ𝑐

𝐸𝐶 . 𝑝𝑡
𝐸𝐶,𝑒

 (20) 

𝜂ℎ𝑐
𝐴𝐶 . 𝑝𝑡

𝐴𝐶,ℎ ≤ 𝑝𝑐
𝐴𝐶  (21) 

𝑝𝑡
𝐻𝑃,𝑒 ≤ 𝑝𝑐

𝐻𝑃 (22) 

𝑝𝑡
𝐻𝑃,𝑐 ≤ 𝜂𝑒𝑐

𝐻𝑃. 𝑝𝑡
𝐻𝑃,𝑒

 (23) 

𝑝𝑡
𝐻𝑃,ℎ ≤ 𝜂𝑒𝑐

𝐻𝑃 . 𝑝𝑡
𝐻𝑃,𝑒

 (24) 

Having the gas energy carrier in the investigated energy 
hub, its constraints are as follows: 

𝑔𝑡
𝑛𝑒𝑡 = 𝑔𝑡

𝐵 + 𝑔𝑡
𝐶𝐻𝑃 + 𝑔𝑡

𝑙  (25) 

𝑔𝑚𝑖𝑛
𝑛𝑒𝑡 ≤ 𝑔𝑡

𝑛𝑒𝑡 ≤ 𝑔𝑚𝑎𝑥
𝑛𝑒𝑡  (26) 

𝜂𝑔𝑒
𝐶𝐻𝑃 . 𝑔𝑡

𝐶𝐻𝑃 ≤ 𝑝𝑐
𝐶𝐻𝑃 (27) 

𝜂𝑔ℎ
𝐵 . 𝑔𝑡

𝐵 ≤ 𝑝𝑐
𝐵 (28) 

 Where these equations represent the constraints on total 
gas consumption in the energy hub, the constraint on gas 
consumption limitation, and the capacity constraints of using 
the two devices, CHP and boiler. 

III. CASE STUDY 

Based on the network shown in Fig. 1, the data used for 
the energy hub includes electrical load, heating load, cooling 
load, electricity energy prices, and wind speed. The values for 
all these variables, except for wind speed, are displayed in Fig. 
2 to Fig. 5. 

 
Fig. 2. Electrical Load profile 

 
Fig. 3. Thermal load profile 

 
Fig. 4. Cooling load profile 

 
Fig. 5. Price by hour 

In order to incorporate the stochastic nature of wind speed, 
it is necessary to consider the uncertainty associated with it. In 
this paper, creating and analyzing different scenarios is 
responsible to address this issue. To do so, a series of base 
wind speed data for each season, as shown in Fig. 6, is initially 
utilized. 
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Fig. 6. Wind speed profile 

Then, assuming a maximum 20% variation in these data, a 
vector with 9 random values ranging from +0.2 to -0.2 is 
created. By considering the base state, a total of 10 different 
scenarios, as presented in Table I, are formed. 

TABLE I.  MAXIMUM WIND SPEED CHANGE IN EACH SCENARIO 

COMPARED TO THE BASE CASE 

Scenario No. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Maximum 

deviation 
00.00 +0.05 -0.06 +0.08 -0.10 +0.12 -0.13 +0.16 -0.17 +0.18 

 

Then, for each scenario, 24 random numbers are generated 
in such a way that their maximum deviation from the number 
1 corresponds to the scenario coefficient given in Table I. By 
multiplying these 24 random numbers with the base state 
values, the wind speed values for the 10 scenarios are created 
for each season. As an example, Table II represents the 
coefficients used to generate the 10 wind speed scenarios for 
the spring season using this method. 

TABLE II.  TWENTY FOUR HOUR COEFFICIENTS FOR TEN WIND SPEED 

SCENARIOS 

 Scenario 

         No. 

Hour 
1 2 3 4 5 6 7 8 9 10 

1 1.000 1.040 0.973 1.026 0.905 1.054 0.950 1.040 0.833 1.040 

2 1.000 1.048 0.949 1.044 0.901 1.105 0.952 1.071 0.997 1.163 

3 1.000 1.024 0.952 1.029 0.908 1.036 0.884 1.063 0.938 1.169 

4 1.000 1.047 0.986 1.039 0.922 1.104 0.985 1.104 0.964 1.073 

5 1.000 1.040 0.947 1.002 0.906 1.072 0.899 1.075 0.885 1.161 

6 1.000 1.025 0.986 1.054 0.938 1.053 0.944 1.127 0.941 1.157 

7 1.000 1.037 0.985 1.022 0.922 1.032 0.930 1.104 0.881 1.093 

8 1.000 1.031 0.969 1.014 0.907 1.057 0.957 1.067 0.876 1.054 

9 1.000 1.038 0.965 1.043 0.996 1.051 0.912 1.080 0.940 1.104 

10 1.000 1.048 0.961 1.063 0.966 1.002 0.920 1.102 0.986 1.114 

11 1.000 1.021 0.973 1.059 0.996 1.020 0.941 1.151 0.903 1.071 

12 1.000 1.028 0.962 1.004 0.910 1.073 0.967 1.077 0.985 1.116 

13 1.000 1.018 0.960 1.035 0.905 1.071 0.957 1.150 0.839 1.064 

14 1.000 1.003 0.950 1.033 0.995 1.003 0.973 1.076 0.879 1.152 

15 1.000 1.049 0.949 1.034 0.970 1.049 0.973 1.060 0.899 1.169 

16 1.000 1.036 0.964 1.003 0.961 1.025 0.955 1.091 0.839 1.014 

17 1.000 1.025 0.962 1.006 0.940 1.048 0.890 1.060 0.993 1.113 

18 1.000 1.024 0.981 1.030 0.995 1.099 0.974 1.027 0.929 1.061 

19 1.000 1.044 0.995 1.071 0.976 1.050 0.876 1.023 0.907 1.049 

20 1.000 1.048 0.950 1.079 0.981 1.007 0.922 1.130 0.876 1.030 

21 1.000 1.028 0.947 1.035 0.917 1.052 0.879 1.025 0.964 1.125 

22 1.000 1.014 0.983 1.001 0.921 1.104 0.886 1.071 0.986 1.064 

23 1.000 1.009 0.977 1.038 0.920 1.061 0.871 1.104 0.865 1.081 

24 1.000 1.037 0.944 1.075 0.923 1.109 0.901 1.137 0.884 1.007 

The parameters of the wind turbine according to (6) are 
provided in Table III, and the efficiencies of the equipment 
used in the simulation are given in Table IV. 

TABLE III.  WIND TURBINE'S PARAMETERS 

Parameter 
Pr 

(kW) 

CutIn 

Speed 

(m/s) 

Rated 

Speed 

(m/s) 

CutOut 

Speed 

(m/s) 

x y z 

Value 400 4 10 22 0.07 0.01 0.03 

TABLE IV.  EQUIPMENT EFFICIENCY 

System Operation Value (%) 

Boiler Gas to Heat 85 

Absorption chiller Heat to Cooling 85 

CHP 
Gas to Electricity 40 

Gas to Heat 35 

Heat Pump 
Electricity to cooling 85 

Electricity to Heat 85 

Heat Storage 
Charging 90 

Discharging 90 

Electrical Storage 
Charging 90 

Discharging 90 

 

The given power for the equipment in the simulation are 
shown in Table V. 

TABLE V.  EQUIPMENT CAPACITY 

System Parameter Value 

Heat Storage Capacity (kW) 200 

Electrical Storage Capacity (kW) 300 

CHP Capacity (kW) 800 

Absorption chiller Capacity (kW) 350 

Heat Pump Capacity (kW) 150 

Transformer  Capacity (kW) 800 

Upstream Feeder 
Import (kW) 1000 

Export (kW) 1000 

Boiler 

Capacity (kW) 800 

Max Water Consumption (kW) 1000 

Max Gas Consumption (kW) 1800 

 

It should be noted that the emission factors for the boiler, 
upstream network, and CHP are 0.38 kg/kWh, 0.58 kg/kWh, 
and 0.36 kg/kWh, respectively. The gas and water purchase 
costs are considered as 6 cent/kWh and 4 cent/kWh, 
respectively. 

IV. SIMULATION RESULTS 

In the conducted simulations, the Epsilon Constraint 
method was used, and to examine the impact of the demand 
response program, simulations were performed in two 
scenarios: with and without the demand response program. 
The results of these scenarios were compared to each other. 
Additionally, to assess the impact of uncertainty in annual 
planning, this comparison was carried out once under 
deterministic conditions and once under uncertainty. 

Firstly, network planning was performed for a one-year 
period, considering different seasons. The boundary values for 
the Epsilon Constraint method are shown in Table VI. As it 
can be seen, the optimal value in the presence and absence of 
the demand response program is located at points 4 and 3, 
respectively. 
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TABLE VI.  PARETO FRONT USING EPSILON CONSTRAINT METHOD IN 

DETERMINISTIC PROGRAMMING 
W

it
h

o
u

t 
D

R
P

 

No. Cost Emission φ1 φ2 φmin 

1 353076.2 1684423 0.002 1 0.002 

2 321319 1696194 0.537 0.9 0.537 

3 313381.7 1707966 0.671 0.8 0.671 

4 309294.6 1719737 0.74 0.7 0.7 

5 305207.6 1731509 0.809 0.6 0.6 

6 301120.5 1743280 0.878 0.5 0.5 

7 297528.7 1755052 0.938 0.4 0.4 

8 296496.3 1766823 0.955 0.3 0.3 

9 295613.7 1778595 0.97 0.2 0.2 

10 294731.1 1790366 0.985 0.1 0.1 

11 293848.4 1802138 1 0 0 

W
it

h
 D

R
P

 

No. Cost Emission φ1 φ2 φmin 

1 339086.9 1676270 0.16 1 0.16 

2 311961.4 1684902 0.59 0.9 0.59 

3 301187.3 1693535 0.76 0.8 0.76 

4 297580.8 1702168 0.817 0.7 0.7 

5 294583.5 1710800 0.865 0.6 0.6 

6 291586.2 1719433 0.912 0.5 0.5 

7 288899.6 1728066 0.955 0.4 0.4 

8 288005.3 1736698 0.969 0.3 0.3 

9 287358 1745331 0.979 0.2 0.2 

10 286710.7 1753964 0.99 0.1 0.1 

11 286063.4 1762596 1 0 0 
 

 
Fig. 7. Pareto front using Epsilon Constraint method in deterministic 

programming 

It is worth mentioning that in the epsilon constraint 
method, the selected steps are such that ten equal steps are 
created based on the normalized values of the second 
constraint (emission). Therefore, the Pareto front includes 
points that have similar distances to each other. But by using 
other methods such as Fuzzy Weighted and by using 
weighting to the objective functions, the method of scattering 
points can be left to the algorithm itself. Although this does 
not necessarily lead to a displacement of the Pareto front, it 
may cause the selection of other points with irregular spacing 
on the beam front. 

Based on Fig. 7, it is evident that, in this case, all points 
under the utilization of the demand response program are in 
more favorable conditions compared to the absence of the 
demand response program. The points located on the Pareto 
front have both lower costs and lower pollution levels. 

Expected Value Programming is a method for analyzing 
problems with uncertain variables. The focus of this method 
is on the expected value of the answer.  

TABLE VII.  PARETO FRONT USING EPSILON CONSTRAINT METHOD IN 

STOCHASTIC PROGRAMMING 

W
it

h
o

u
t 

D
R

P
 

No. Cost Emission φ1 φ2 φmin 

1 369629.7 1773541 0.006 1 0.006 

2 337529.5 1786539 0.541 0.9 0.541 

3 330331.1 1799538 0.661 0.8 0.661 

4 325817.9 1812537 0.736 0.7 0.7 

5 321304.8 1825536 0.812 0.6 0.6 

6 316791.6 1838534 0.887 0.5 0.5 

7 313961 1851533 0.934 0.4 0.4 

8 312928.3 1864532 0.951 0.3 0.3 

9 311960.7 1877531 0.967 0.2 0.2 

10 310986 1890529 0.984 0.1 0.1 

11 310011.4 1903528 1 0 0 

W
it

h
 D

R
P

 

No. Cost Emission φ1 φ2 φmin 

1 356140 1766706 0.171 1 0.171 

2 327653.2 1776432 0.606 0.9 0.606 

3 317400 1786158 0.762 0.8 0.762 

4 314023.1 1795884 0.814 0.7 0.7 

5 310646.3 1805610 0.866 0.6 0.6 

6 307269.4 1815336 0.917 0.5 0.5 

7 304962.5 1825062 0.952 0.4 0.4 

8 304037.3 1834788 0.967 0.3 0.3 

9 303308.8 1844514 0.978 0.2 0.2 

10 302579.5 1854240 0.989 0.1 0.1 

11 301850.2 1863966 1 0 0 
 

 
Fig. 8. Pareto front using Epsilon Constraint method in stochastic 

programming 

To perform stochastic programming by minimizing the 
expected value, wind speed is defined as a random variable, 
and the expected value of the solution is selected as the 
objective function. Of course, it should be noted that this 
answer is still a probabilistic answer, and due to the use of 
probability distribution, it cannot be considered as a definite 
answer. 

In the second part of the simulation, uncertainty in the 
wind turbine generating capacity has been considered. By 
comparing the results with the previous case, it is clear that 
both operating costs and pollution have increased. The 
increase in operating costs is 5.34%, and the increase in 
pollution is 5.4% in the absence of the demand response 
program. However, in the presence of the demand response 
program, these increases are 5.38% for operating costs and 
5.5% for pollution. Table VII and Fig. 8 present the results of 
the simulation under uncertainty conditions. 

It can be observed that in both cases, incorporating 
uncertainty into the system in the planning process has 
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resulted in increased operating costs and pollution. This 
increase can be interpreted as the cost incurred to enhance the 
resilience of the planning against the uncertainty of input 
parameters. 

V. CONCLUSION 

In this paper, annual energy management in a microgrid 
consisting of various electrical, thermal, and cooling loads 
was performed using a multi-objective approach based on the 
Epsilon Constraint method. Simulation results were obtained 
considering the presence and absence of demand response in 
the network, indicating the positive impact of demand 
response implementation in all scenarios. Furthermore, it was 
observed that introducing uncertainty in wind speed led to an 
increase in operating costs by 34.5% and pollution costs by 
4.5% in the absence of demand response program, while in the 
presence of demand response, the increase was 38.5% in 
operating costs and 5.5% in pollution costs. This increase can 
be interpreted as the cost incurred for enhancing the resilience 
of the planning process against input parameter uncertainties. 
Additionally, since the epsilon constraint method uses fixed 
steps in the solution process, the Pareto front will consist of 
points with similar distances, spreading along the middle of 
the Pareto frontier. It is possible that sufficient concentration 
in the search space may not occur around the optimal solution. 
To improve the search process, other optimization methods 
can be employed to select targeted steps on the Pareto front. 
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