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Abstract—With the trend in transportation electrification,
electric vehicle (EV) charging/discharging scheduling has become
an area of concern. Scheduling can help manage EV charg-
ing/discharging activities. Besides, it is also valuable for energy
systems evaluation, in which case modeling the individual EV
has high complexity and requires a long computation time due
to too many EVs. The aggregated model significantly reduces
computation time but may sacrifice accuracy. This work inves-
tigates the trade-off between accuracy and computational time
when designing intelligent EV charging/discharging scheduling
by comparing the individual and aggregated models. This work
first provides a detailed problem formulation. The simulation
results show that the aggregated model can achieve similar en-
ergy system performance estimations from the energy-matching
perspective compared to the individual model, given that the
system allows vehicle-to-grid (V2G). Otherwise, the aggregated
model will overestimate the performance. Thus, this work,
in the meantime, proposes an extra constraint to avoid such
overestimation when V2G is not allowed. Given the validated
accuracy of the aggregated model and its advantage of low
complexity and computation time, the aggregated model is more
suitable for assessing large (e.g., city-level) energy systems.

Index Terms—charging scheduling, vehicle-to-grid, energy sys-
tem, aggregated model

I. INTRODUCTION

Electric vehicles (EVs) have seen a surge in popularity in re-
cent years due to their environmental benefits and potential to
reduce dependence on fossil fuels [1]. However, as the number
of EVs on the road increases, it presents new challenges on the
power grid. In particular, EV charging/discharging manage-
ment has become an area of concern. The charging/discharging
from the increasing number of EVs can significantly affect the
immediate demand shape [2], and without proper management,
the grid will face instability issues [3].

The existing EV charging/discharging scheduling literature
has investigated the aspects such as the scheduling objectives
and the mathematical formulations. Recent reviews [4–6]
provide an overview of the relevant topics. Indeed, apart
from optimally managing the EVs, the charging/discharging
scheduling also plays an essential role in the energy systems
evaluation. Simulating various scheduling scenarios and as-
sessing their impact on the power grid can lead to a better
understanding of the energy system and facilitate planning for
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accommodating the growing number of EVs. This approach
enables the identification of potential issues and insights
into strategies for mitigating them, such as modifying the
distribution network or adjusting the energy production. For
example, Fachrizal et al. [7] showed the optimal solar power
sizing based on the EV charging schedules; Heinisch et al.
[8] investigated how various scheduling strategies affect the
optimal operation and design of the electricity and district
heating sectors, in conjunction with sector-coupling in the
urban energy system.

Energy systems evaluation often requires considering many
EVs. There are two primary approaches to designing the
scheduling: Aggregated modeling, which provides aggregated
charging scheduling, and individual modeling, which addi-
tionally provides individual charging scheduling. Note that
the concept of individual modeling differs from distributed
scheduling. To provide individual charging scheduling, indi-
vidual modeling must introduce parameters for each individ-
ual. In contrast, aggregated modeling considers all chargings
as a single aggregate, dramatically reducing the parameters’
dimension. Thus, aggregated modeling can significantly reduce
computation time but may sacrifice accuracy. González Vayá
et al. [9], after describing the individual model, introduced the
aggregated EV charging/discharging formulation. The aggre-
gated model achieved good performance in the defined sim-
ulation scenarios. Compared to the individual model, the ag-
gregated model has significantly reduced complexity. Though,
they did not compare both models to verify the accuracy of
the aggregated model.

Evaluating large energy systems by the individual model
is unrealistic and sometimes even infeasible. The aggregated
model can potentially reduce the computation time. However,
there are concerns about the aggregated model. Fig. 1 helps
illustrate these potential problems: suppose that one battery is
at the maximum state-of-charge (SoC), one is at the minimum
SoC that requires charging until departure, and the rest has an
SoC between the minimum and maximum range. The resulting
aggregated battery SoC will also be within the range, and there
are potentially different charging/discharging options that are
feasible from the aggregation perspective

• Charging at maximum.
• Discharging at maximum.
• Discharging or charging at low power.

Charging at maximum is unrealistic since b1 is full. Similarly,
discharging at maximum is unrealistic due to bN . These
unrealistic charging/discharging can undermine the result of
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Fig. 1. The concept of aggregating the batteries from individual sessions.

the aggregated model. Discharging or charging at low power
may be unrealistic for bN since it requires charging until
departure (as in the assumption). However, the aggregated
model only focuses on the net charging/discharging activity,
i.e., it does not capture the overlapping part, referred to as
vehicle-to-vehicle (V2V). For example, a few individuals are
charging while others are discharging can result in a net 0
charging power. The V2V is acceptable if the scheduling
strategy allows discharging. However, the aggregated model
is incorrect if the strategy allows only charging.

Consequently, this work investigates

• How much more computationally efficient is the aggre-
gated model?

• How inaccurate is the aggregated model?
• How to avoid the unwanted V2V in the scheduling

scenario which allows only charging?

The main contributions of this work are:

• The detailed EV charging/discharging scheduling formu-
lation for both the individual and aggregated models.

• A novel constraint formulation for the aggregated model
in smart charging without vehicle-to-grid (V2G) capabil-
ity scenario.

• A systematic comparison between the individual model
and the aggregated model.

The remainder of this paper is structured as follows. Section
II provides information on the applied methods, which cover
the data used in this study, the problem formulation, the
energy-matching measures explanations, and the descriptions
of the simulation scenarios. Section III presents the simulation
results and the analysis. Section IV concludes the work.

II. METHODS

This section describes the methods used in this paper.
Moreover, Section II-A presents data and the assumptions used
in the study. In Section II-B, the individual and aggregated
smart charging/discharging optimization models are described.
Section II-C presents the energy matching measures used
to assess the energy performances. The simulation scenarios
conducted in this study are presented in Section II-D.

A. Data and Case Study

This work aims to assess the aggregated model for energy
system evaluation. Specifically, this paper investigates a city-
level net-zero energy system where the renewable energy
sources (RESs) generation equals the electricity demand (in-
cluding EV charging) over the year. Thus, the simulations
require datasets from the RES generations, the base load of
the city, and the charging sessions.

This paper utilizes the mobility data from the Swedish travel
survey in 2006 [10, 11], and obtains the charging sessions
for a Swedish city with the assumption that all personal cars
in the city are electric, and 80% of the users are charging
at home [12] while the rest are at work. Depending on the
population, personal car ownership percentage, and productive
age percentage [13], the generated sessions cover around 37k
users. For the base load, the historical data from Sweden can
be found in [14], which has the data for the corresponding
region to the selected city. The base load is then rescaled so
the overall EV charging and base demand ratio is 0.11 :1 [15].
This work also utilizes historical data from [14] for the RES
generation and rescales it so that the generation equals the
consumption in the city. In the later simulations, the number
of uses is much smaller than 37k, so that the individual model
is applicable. The base load and the RES are then rescaled
accordingly.

B. Problem Formulation

This section provides the problem formulation for both
the individual and aggregated models. In the formulation,
lowercase letters denote variables; uppercase letters denote
constant values; lowercase boldfaced letters denote vectors;
and uppercase boldfaced letters denote matrices.

Let H represent the scheduling horizon, T the decision
time slot duration, and K = ⌊H/T ⌋ the total number of time
slots. This paper aims to investigate the energy balance in a
RES-powered system where the net energy is zero over the
horizon H , i.e., RES production equals energy consumption
from EV charging. The production consists of the RES,
pRES, and potential discharging from the EVs, pdch, while the
consumption comes from the base load, pbase, and the EV
charging, pch:

pprod = pRES + pdch, (1)
pcons = pbase + pch, (2)

where pprod and pcons ∈ R1×K denote the total production and
consumption. Thus, the objective function is:

min
pch,pdch

∥pprod − pcons∥2 . (3)

A charging session is defined as a 3-tuple (ta, td, e), where
ta is the arrival time index, td is the departure time index, and
e is the energy demand. Let ta, td, and e ∈ RS×1

≥0 denote
the arrival time indexes, departure time indexes, and energy
demands for the considered S charging sessions. Charging
sessions have two types: The minimum required charging time
is equal to or smaller than the stay duration. For the sessions
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where the minimum required charging time equals the stay
duration, the EV must charge during the whole stay, which
leaves no flexibility. Otherwise, the extra stay time provides the
potential for smart charging/discharging control. To quantify
the inflexible charging sessions, let pfix ∈ R1×K

≥0 denote
the aggregated charging power from the inflexible charging
sessions. Consequently, the total EV charging power is:

pch = pfix + pfch, (4)

where pfch is the charging power for those flexible charging
sessions.

The difference between the individual and aggregated mod-
els mainly lies in formulating the constraints, which cover
the charging/discharging power and the energy content. The
following will provide a detailed description of the constraints
formulation.

1) Individual Model: In the individual model, the charg-
ing/discharging decision variable matrix Pind has the dimen-
sion S × K. Let pind,load ∈ R1×K denote the summation of
the load at each time index:

pind,load =
S∑

s=1

[Pind]s,: . (5)

Thus,

pch = pfix + max (pind,load, 0) , (6)
pdch = −min (pind,load, 0) , (7)

where min (·) and max (·) are element-wise comparison.
To formulate the charging/discharging power constraint, it

requires a binary connection matrix Cp,ind ∈ BS×K to indicate
whether the charging session is connected:

[Cp,ind]s,[ta]s:[td]s
= 1,∀s ∈ {1, · · · , S} . (8)

With Cp,ind, the constraint can be formulated as follows:

|Pind| ⪯ PmaxCp,ind, (9)

where Pmax is the maximum charging/discharging power.
To formulate the energy content constraint, it requires binary

connection matrices Ce,ind ∈ BS×K and Dind ∈ BS×K to
indicate the session’s connection status before departure and
the departure time index for the sessions:

[Ce,ind]s,[ta]s:[td]s−1 = 1,∀s ∈ {1, · · · , S} , (10)

[Dind]s,[td]s
= 1,∀s ∈ {1, · · · , S} . (11)

Additionally, it requires a matrix Ea,ind ∈ RS×K
≥0 to indicate

when the new energy content from the arriving charging
session is available.

[Ea,ind]s,[ta]s
= Emax − [e]s ,∀s ∈ {1, · · · , S} . (12)

where Emax is the maximum battery capacity or energy con-
tent. Then, the energy content for those charging sessions is:

Eind = cumsum (Ea,ind)− Emaxcumsum (Dind)

+T cumsum (Pind) ,
(13)

where Emax also denotes the required departure energy content,
and cumsum (·) is to compute the cumulative sum over the
row. Note that, the result from the cumsum (·) operation has
the same dimension as the original matrix. The energy content
has the following constraint:

EminCe,ind ⪯ Eind ⪯ EmaxCe,ind, (14)

where Emin is the minimum energy content.
Consequently, the optimization formulation for the individ-

ual model is:

Pind, opt = arg min
pch,pdch

∥pprod − pcons∥2 ,

s.t.

{
|Pind| ⪯ PmaxCp,ind,

EminCe,ind ⪯ Eind ⪯ EmaxCe,ind,

(15)

where Pind, opt denotes the optimal resulting scheduling.
2) Aggregated Model: In the aggregated model, the deci-

sion variables pagg are in vector form, and the dimension is
1×K. Thus,

pch = pfix + max (pagg, 0) , (16)
pdch = −min (pagg, 0) . (17)

Moreover, for the constraint formulation, the required parame-
ters cp,agg, ce,agg, dagg, and ea,agg can be directly computed from
those in the individual model: by summing over the column
of Cp,ind, Ce,ind, Dind, and Ea,ind, respectively.

Consequently, the constraint for the aggregated charg-
ing/discharging power is:

|pagg| ⪯ Pmaxcp,agg. (18)

The aggregated energy content is:

eagg = cumsum (ea,ind)− Emaxcumsum (dagg)

+T cumsum (pagg) ,
(19)

which has the following constraint:

Emince,agg ⪯ eagg ⪯ Emaxce,agg. (20)

Thus, the aggregated model’s optimization formulation is:

pagg, opt = arg min
pch,pdch

∥pprod − pcons∥2 ,

s.t.

{
|pagg| ⪯ Pmaxcp,agg,

Emince,agg ⪯ eagg ⪯ Emaxce,agg.

(21)

where pagg, opt denotes the optimal resulting scheduling.
3) Improved Aggregated Model for Smart Charging: The

aggregated model focuses only on the net charging/discharging
activity, i.e., there are potential V2V activities from the indi-
vidual perspective. The unmodelled V2V is acceptable if the
desired charging strategy allows the EV to discharge. When
discharging is not allowed, the model should also avoid the
V2V.

Thus, this paper proposes a new constraint on the overall
charged power: the minimum energy the grid must have
delivered should cover the required energy to fulfill the energy
demand for the departing EVs, which aims to minimize or
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prevent the undesirable V2V entirely. Let Ed,ind ∈ RS×K
≥0

denote when the energy demand should be fulfilled for each
session, and let ed,agg denote the required energy from the grid
at each time index (summation over the column of Ed,ind):

[Ed,ind]s,[td]s
= [e]s ,∀s ∈ {1, · · · , S} , (22)

ed,agg =
S∑

s=1

[Ed,ind]s,: . (23)

Then the constraint for the total charged power is:

cumsum (ed,agg) ⪯ T cumsum (pagg) . (24)

Consequently, the optimization formulation for aggregated
smart charging without V2G capability is:

pagg-sc, opt = argmin
pch

∥pprod − pcons∥2 ,

s.t.


0 ⪯ pagg ⪯ Pmaxcp,agg,

Emince,agg ⪯ eagg ⪯ Emaxce,agg,

cumsum (ed,agg) ⪯ T cumsum (pagg) .

(25)

where pagg-sc, opt denotes the optimal resulting scheduling for
smart charging without V2G capability.

C. Energy Matching Measures

This paper examines the energy balance in a net zero energy
system, where the annual renewable energy production equals
the electricity consumption (including EV charging). Three
energy-matching measures are applicable to assess model
performance [7, 16]:

• Self-consumption (SC): the ratio of the consumed re-
newable electricity production to the total renewable
production;

• Self-sufficiency (SS): the ratio of the consumed renew-
able electricity production to the total EV charging con-
sumption;

• Self-consumption-sufficiency balance (SCSB): the equi-
librium between SC and SS.

Fig. 2 provides a schematic outline of the daily consumption

Time (h)
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ow

er
 (

kW
)

A

B

C

Fig. 2. Schematic outline of daily net load (A+C), net generation (B+C), and
absolute self-consumed electricity (C) [7].

(A+C), generation (B+C), and self-consumed electricity (C),
which helps to understand the measures [7, 16]. Mathemati-
cally, they are defined as:

C =
K∑

k=1

min (pprod,pcons) , (26)

ϕSC =
C∑K

k=1 pprod
, (27)

ϕSS =
C∑K

k=1 pcons
. (28)

High generation usually leads to low ϕSC while high con-
sumption leads to low ϕSS. This creates an imbalance that
needs to be quantified. The ϕSCSB, proposed by [7]:

ϕSCSB =
2ϕSCϕSS

ϕSC + ϕSS
. (29)

which is the harmonic mean of ϕSC and ϕSS, can convey the
optimal trade-off. This work will apply SCSB to evaluate the
energy balance.

D. Simulation Scenarios

This study is to verify how much more computationally
efficient and accurate the aggregated model is, compared to
the individual model. Thus, the simulations cover both the
computation time estimation and the model performance.

1) Computation Time Comprison: The number of consid-
ered users and the scheduling horizon affect the computation
time. Thus, this paper evaluates the computation time from
these two aspects. Consequently, the simulation has two parts:

• The scheduling horizon is with a fixed number of days
(7 days in this case to cover the daily difference); then,
the simulation covers a different number of users (10, 20,
100, 200, 1000, 2000 in this study).

• The number of users is a fixed value (200 users in this
case to limit the computation time); then, the simulation
covers a different number of days, ranging from 7 to 25,
with a step of 2.

Additionally, to consider the seasonality, the starting date
covers 4 months in the year: February, May, August, and
November. Each simulation is repeated 20 times with different
users (thus different travel and charging behavior) to count for
the uncertainties.

The comparison should cover both scenarios with and with-
out V2G capability. However, considering the similarity, this
work will only compare the scenario where V2G is allowed.

2) Model Performance Assessment: As for comparing the
performance of the aggregated and individual models, the
scheduling horizon will not matter as both models evaluate the
performance over the defined scheduling horizon. However,
the number of users matters since it affects the individual
model but not the aggregated model. Thus, this paper compares
the performance of these two models in the simulation setting
with a fixed number of days (7 days) and a varying number
of users (10, 20, 100, 200, 1000, 2000 in this study).
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III. RESULTS AND ANALYSIS

This work utilizes Python and the module CvxPy [17], as a
modeling language for the least-square optimization problems.
This section will provide the simulation results and analyses
for each scenario.

A. Computation Time

Fig. 3 and Fig. 4 show how the increasing number of
days and users affect the computation time, respectively. As
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tim
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)

Individual mean time
y = 66.05 + 46.27e0.10x

Aggregated mean time
y = 0.02 + 0.01e0.17x

Fig. 3. Computation time increases exponentially for both models with
increasing days. The line plots show the estimated relationship between the
computation time and the number of days.
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Fig. 4. In the individual model, the computation time increases linearly with
the increasing number of users. The aggregated model has a fixed computation
time. The line plots show the estimated relationship between the computation
time and the number of users.

mentioned in the simulation setup, there are extra measures to
count for the uncertainties: for each number of days and users,
the simulation is repeated 20 times. Besides, the simulation
covers the starting dates from the 4 different months. Fig. 3
and 4 show only the mean computation time with the dot
plot. With the increasing number of days, there exhibits an
exponential relationship. The fitted curves in the line plots
based on exponential functions confirm it. However, with the
increasing number of users, the individual model shows a
linear increase in the computation time (applied log to both x

and y before fitting). In contrast, the aggregated model has a
fixed computation time. Note that, the intention of showing a
fitted curve is to visually demonstrate the potential relationship
between the computation and the number of days and users.
Estimating the computation time with a high number of days
or users requires much more accurate curve-fitting, which is
not within the scope of this study.

The increase in the number of days will extend the column
length for the decision variable, which results in increased
computation time for both the individual model and the
aggregated mode. An increasing number of users will lead
to an increased row length for the decision variable in the
individual model. However, it does not directly affect the
aggregated model. Consequently, only the individual model
has increased computation time.

B. Model Performance

This section first shows the performance of the aggregated
model on smart charging with V2G capability. Further, know-
ing that directly applying the aggregated model on smart
charging without V2G is incorrect, this paper has proposed
an extra constraint. Overestimations on the SCSB for both
the original aggregated model and the improved aggregated
model, compared to the individual model, are shown.

1) Smart Charging and V2G: Fig. 5 shows how the in-
creasing number of users affects the SCSB. As seen, the
aggregated model seems to provide the best accuracy when
the number of users is small. This is due to the fact that, with
a small number of EVs and their separate connection times,
the aggregated model can only provide realistic charging and
discharging power. With the increasing number of users, there
is an overestimation of the SCSB from the aggregated model.
However, the overestimation tends to converge, and the value
is small (around 1%), as shown in Fig. 6. The overestimation
is due to the unrealistic charging/discharging power since the
optimization only constrains the aggregated energy content
other than the individual. An increasing number of users
provides more flexibility for the solver to find solutions within
the boundary, making the overestimation insignificant.

Fig. 7 shows an example resulting load from the indi-
vidual and aggregated models (2000 users in February). As
can be seen, the aggregated model sometimes desires higher
charging/discharging power, which is not feasible from the
individual perspective. Though, the overall load from both
models is similar.

2) Smart Charging Only: Fig. 8 shows the overestimations
from the original and the improved aggregated models. As
seen, the improved aggregated model has significantly reduced
the overestimation. Especially during the week in May, the
overestimations are too small (below 0.0001) to show.

Fig. 9 shows an example resulting load from the individual,
aggregated, and improved aggregated models (2000 users in
February). As can be seen, the original aggregated model
can dramatically overestimate the charging ability due to
delayed charging for some EVs. On the contrary, the improved
aggregated model has a constraint on energy delivery, avoiding

5

11th IEEE INTERNATIONAL CONFERENCE ON SMART GRID June 04-07, Paris, FRANCE

icSmartGrid 2023



0.7

0.8

0.9

1.0

SC
SB

 (p
.u

.)

Week in Feb. Week in May

10 20 100 200 1000 2000
No. of users

0.7

0.8

0.9

1.0

SC
SB

 (p
.u

.)

Week in Aug.

10 20 100 200 1000 2000
No. of users

Week in Nov.

Individual model
Aggregated model

Fig. 5. The individual model provides the accurate SCSB. The aggregated model usually results in overestimated SCSB. Note that the tick labels on the
x-axis are only ordinal.
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Fig. 6. Overestimation of the SCSB from the aggregated model. Note that the tick labels on the x-axis are only ordinal.
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Fig. 7. The generation and load profile. The SCSB values for individual and aggregated models are 0.895 and 0.906.

delayed charging. Consequently, the overall load from the
aggregated model resembles that from the individual model.

IV. CONCLUSION

This paper explores individual and aggregated modeling ap-
proaches and analyzes their strengths and weaknesses. The ag-
gregated model has a significant advantage in the computation
time, but it sacrifices the evaluation accuracy. The simulation
shows that the extra flexibility from an increasing number
of users mitigates the disadvantage of the aggregated model
allowing unrealistic charging/discharging. Consequently, the
overestimation converges to an insignificantly small value. On
the other hand, the aggregated model is not directly applicable
to smart charging without V2G as it will greatly overestimate

the energy system performance. This paper has proposed a
method to avoid unwanted V2V in the aggregated model by
forming an extra constraint, which significantly improves the
accuracy. Further studies on the energy system evaluation (e.g.,
load matching potential, optimal sizing of RES) involving
many EVs can apply the aggregated modeling to simplify the
problem and reduce the computation time, but bear in mind
the potential sacrificed accuracy.

This work assumes no energy loss during charg-
ing/discharging to limit the scope of the study. In a more
practical setting, charging efficiency should be considered,
which brings a further challenge to the aggregated model since
it cannot keep track of the V2V and thus cannot determine the
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Fig. 8. Overestimation of the SCSB from both the original and the improved aggregated models. Note that the tick labels on the x-axis are only ordinal.
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Fig. 9. The generation and load profile. The SCSB values for the individual, aggregated, and improved aggregated models are 0.819, 0.856, and 0.810.

energy loss from that. The future study includes quantifying
the V2V and integrating the energy loss in the aggregated
model to improve the evaluation accuracy.
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