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Abstract— Climatic test chambers are devices used to 

simulate environmental conditions for the testing and 

verification of products in various industries. However, these 

chambers can consume significant amounts of energy, resulting 

in high operating costs and environmental impacts. Therefore, 

the need to optimize the energy efficiency of climatic test 

chambers while maintaining their performance is becoming 

increasingly important. In this paper, we will discuss the control 

method for humidity testing by calculating the use of the LSTM 

algorithm instead of the classical control method PID to control 

climatic test chambers to improve energy efficiency and the 

control method based on absolute humidity instead of relative 

humidity. In particular, we harness the power of artificial 

neural networks to reduce energy consumption and improve 

control of climatic test chambers based on various input 

parameters such as temperature, humidity, and test duration. 

By changing the control methods, we aim to increase efficiency 

and make it more suitable and efficient for smart grid systems. 

Keywords—Climatic controlled room, efficiency, deep 

learning, Absolute Humidity Control. 

I. INTRODUCTION 

Climatic test chambers are devices used in various 
industries to simulate environmental conditions for testing and 
validation of products. However, such chambers can consume 
significant amounts of energy and result in high operating 
costs and environmental impacts.[1] [2]Therefore, optimizing 
the energy efficiency of climatic test chambers, but 
maintaining their performance, is becoming increasingly 
important. In this paper, we will discuss the use of the LSTM 
(Long Short-Term Memory) algorithm to improve the energy 
efficiency of climatic test chambers and the control method of 
humidity testing based on absolute humidity instead of 
relative humidity [1,2]. In particular, based on various input 
parameters such as temperature, humidity and test time, we 
will present a control method to reduce energy consumption 
and improve control of climatic test chambers by harnessing 
the power of artificial neural networks [3]. With the obtained 
efficiency, we pave the way for its use in smart grid systems 
with less energy consumption [4,5]. 

To evaluate the performance and reliability of these test 
chambers, temperature, humidity, and other factors need to be 
accurately controlled. Traditionally, humidity control is 
usually based on relative humidity (RH) values. Relative 
humidity is the ratio of ambient water vapor to the water vapor 
carrying capacity of the air, usually expressed as a percentage 
(%RH) [1]. However, temperature and humidity control based 
on relative humidity may involve irregularities and difficulties 
in the operation of humidification /dehumidification systems, 

where humidity is expressed differently under different 
temperature and pressure conditions and operated 
accordingly, thus reducing energy efficiency. 

Absolute humidity (AH) control has emerged as an 
alternative method of humidity control [6]. Absolute humidity 
refers to the actual water vapor content of a unit volume of air 
and is usually expressed in grams of water vapor/kilogram of 
air. Absolute humidity control is recognized as a more 
accurate and reliable humidity control method than relative 
humidity control. In addition, absolute humidity control can 
perform more consistently under different test conditions as 
the target temperature humidity values are achieved with more 
realistic control. 

In this paper, we highlight the absolute humidity control 
method and deep learning methods to improve the energy 
efficiency of climatic test chambers. It will examine how the 
conversion from traditional relative humidity control to 
absolute humidity control can improve energy saving and 
performance. Furthermore, the impact of deep learning 
methods, such as the use of artificial neural networks and the 
LSTM algorithm, on the humidity and temperature control of 
climatic test chambers will be discussed. By highlighting the 
potential of climatic test chambers to optimize energy 
efficiency, this study can contribute to the adoption of a more 
sustainable approach in future smart grid systems. 

II. CLIMATIC TEST CHAMBERS 

 Climatic test chambers are specialized test equipment used 
in various industries to simulate and control environmental 
conditions to evaluate the performance, durability, and 
reliability of products under different climatic scenarios [7,8].  

 
Fig. 1.  Example of Climatic Test Chamber 
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These chambers are designed to simulate real-world 
conditions and create controlled environments with precise 
temperature, humidity, sunlight, vibration and other 
environmental parameters to evaluate how products respond 
to different climates. Climatic test chambers are widely used 
in industries such as automotive, aerospace, electronics, 
pharmaceuticals and food processing to conduct accelerated 
aging tests, durability tests, performance tests and quality 
assurance checks [9]. 

A climatic test chamber is an enclosed, insulated room that 
allows precise control of temperature, humidity, light and 
other environmental factors to create various climatic 
conditions such as extreme cold, high temperature, low or high 
humidity for testing purposes. These chambers are used to 
evaluate the performance, reliability and durability of 
products under different climatic scenarios. It helps 
manufacturers to identify potential problems and improve 
product quality before they go to market. 

The main purpose of climatic test chambers is to enable 
accurate and consistent testing of products under different 
climatic scenarios by creating controlled environments that 
simulate real-world conditions in a repeatable and controlled 
manner. These chambers enable manufacturers to test how 
their products perform in extreme and extreme conditions, 
assess their resistance to changes in temperature, humidity, 
light, vibration, etc., examine their behavior under different 
climatic scenarios and identify potential design flaws or 
weaknesses.[10] 

The refrigeration system of climatic chamber is based on 
a vapor compression refrigeration cycle that includes a 
refrigeration compressor, a condenser, an evaporator, and an 
expansion valve. The refrigeration compressor compresses the 
gaseous refrigerant to high pressure and temperature levels. 
The compressed gas then comes into contact with ambient air 
or water in the condenser, where it loses its heat and turns into 
a liquid.  

The liquid refrigerant evaporates as its pressure drops in 
the expansion valve, absorbing heat and cooling the 
environment in the process. The vaporized refrigerant returns 
to the compressor and completes the cycle. This cycle helps 
the climatic cabinet to always maintain the desired 
temperature and humidity conditions. Figure 3 shows an 
example of a cascade cooling system schematic. 

 

Fig. 2. Internal structure of the climatic test chamber. 

The heating system of air-conditioned cabins is usually 
provided using electric heating elements. The heating 
elements directly heat the air inside the cabin to reach the 
desired temperature levels. The resistances are controlled by 
thermostats or controllers such as PLC to control the 
temperature inside the climatic cabinet.[12] Figure 2 shows 
the internal structure and component layout of a climatic 
cabinet.  

 

Fig. 3. Example of a cooling system schematic. 

The humidification system of air-conditioned cabinets 
controls humidity levels with data from humidity sensors, 
usually by adding water vapor or spraying water. The 
humidification system humidifies the air inside the cabin to 
achieve the desired humidity levels. Humidification 
equipment such as ultrasonic humidifiers, steam boilers or 
steam generators can be used to add water vapor. Sensors 
continuously monitor the humidity levels inside the climatic 
cabinet and add water vapor when humidity drops, ensuring 
the desired humidity conditions.[13] 

The most used dehumidification systems are 
refrigeration-based dehumidification systems. These systems 
typically send cold fluid to the evaporator in the test volume 
to remove moisture from the air. By cooling the air to below 
the dew point temperature, it condenses the moisture into 
water. This reduces the humidity inside [14]. 

 

III. MATERIAL AND METHOD 

 Long Short-Term Memory (LSTM) is a type of recurrent 
neural network (RNN) that is widely used in various areas of 
machine learning and deep learning, including time series 
analysis, speech recognition and natural language processing. 
LSTM overcomes this limitation by using a more complex 
architecture involving memory cells with gating mechanisms, 
allowing it to capture long-range dependencies and more 
effectively learn patterns in sequential data. The LSTM 
architecture includes gates such as the input gate, output gate 
and forget gate, which regulate the flow of information and 
enable the model to selectively hold or forget information 
from previous time steps. This makes LSTM particularly well 
suited for tasks that require modeling sequences with long-
term dependencies, such as time series data used in climatic 
test chambers. 

To improve energy efficiency and climate operations, the 
LSTM method has been widely used in many areas, such as 
building energy management systems, smart grids, and 
climate prediction. For example, in Zhang et al.'s (2020) 
study, LSTM was used to predict a building's cooling load, 
which resulted in more effective energy management and 
HVAC regulation.[18] Similarly, in the study by Liu et al. 
(2019) [19], LSTM is used for prediction of electricity 

Cooler System 

11th IEEE INTERNATIONAL CONFERENCE ON SMART GRID June 04-07, Paris, FRANCE

icSmartGrid 2023



consumption in a smart grid, facilitating demand side 
management and peak load savings. In the context of climatic 
test chambers, LSTM can be used to model and predict 
temperature, humidity, and other climatic variables, enabling 
more accurate and efficient control of the test chamber 
environment.  

 Using LSTM in the proposed deep learning approach to 
improve energy efficiency in climatic test chambers, the 
model can effectively capture temporal dependencies and 
patterns in the data, leading to improved energy management 
strategies and reduced energy consumption. This study aims 
to use an LSTM model trained with a PID controller instead 
of PID control to realize parameter-independent temperature 
control [15].  

 The study process includes determining the time series 
target temperature set points, generating the data set, 
extracting the features, designing, and training the LSTM 
model, and evaluating the model performance [16]. Among 
deep learning models, recurrent neural network (RNN) 
models are known to be suitable for learning time series data. 
The LSTM network consists of input, multiple hidden and 
output layers and the memory cells of the hidden layers play 
an important role in learning the data.  

 The data set to be used for the learning process is first 
created with input-output data from the designed PID 
controller. In order for the data set not to cause training errors 
and to operate with high accuracy, the temperature control 
system controlled by the existing PID controller must 
successfully reach the target temperature values. Therefore, a 
target temperature prescription was created using random 
values in a certain range to test the PID controller. The PID 
test recipe in Figure 4 was used to generate the training data 
for the model. 

 Before proceeding with the machine learning system, it is 
necessary to test it with the existing dynamics of the system. 
Therefore, in the randomly generated target temperature 
graph, the temperature range is defined in 5 steps in the range 
of 20-60 °C.  

 

 
Fig. 4. Example of a randomized target temperature/time graph. 

 The prescription consists of a period of approximately 120 
minutes. This test recipe was tested with the existing PID 
controller software. The test results showed that the PID-
controlled software captured the target temperatures 
appropriately. Figure 4 shows the operating performance of 
the PID controller output on the pre-generated test recipe.  

 The three parameters indicated in the graph are RP, CT 
and TT respectively. In the created system, RP (Resistance 

Power) is the percentage representation of the resistance 
output power. CT (Current Power) represents the current 
temperature value of the PID controlled system in °C. TT 
(Target Temperature) parameter shows the target temperature 
(°C) value on the recipe.  

 
Fig 5. Test graph with PID control software 

 
The results obtained with the PID-controlled software 

were used to train and test the LTSM-controlled software. The 
control software modeled using an LSTM neural network 
developed with Tensorflow and Keras libraries was integrated 
into the controller. The other 5-step test recipe was run again. 

Table 1 shows the values of the methods and optimum 
parameters used in LSTM control. 

TABLE I.  OPTIMUM PARAMETER VALUES 

No Parameter Value 

1 Batch_size 128 

2 validation_split 0,2 

3 epochs 300 

4 optimizer adam 

5 Model Sequential 

6 Return sequence True 

 

The model performance obtained as a result of training 
with the specified parameters is shown in the graph in Figure 
6. Error values decreased over time to minimum levels. 

 

Fig 6. LSTM Training performance graph. 

 
A test recipe was created again with LSTM controlled 

software. like the previous recipe, it consists of 120 minutes 
and 5 randomized steps in Figure 6. 
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Fig 7. New test recipe graph. 

 
First, we test the test recipe only with PID controlled 

software. The test results are as follows in Figure 8. 
Temperature control tolerance is in the range of ±2 °C. 

 

Fig 8. New test recipe result using PID. 

 
The same test recipe was performed again with the LSTM 

controlled software. the results are shown in Figure 9. 

 

Fig 9. LSTM test performance graph 
  

 The test results of the LSTM network model realized in 
the last stage independently of the PID controller are presented 
in Figure 9. The test output shows that the LSTM network 
successfully reaches the temperature setpoints. In addition, 
when we examine the resistance outputs; it has worked at 
lower powers compared to PID and by using the output at 
optimum power, it shows that it both increases energy 
efficiency and provides more successful control in achieving 
the target. The investigations on air-conditioned cabinets 
reveal that the LSTM-based neural network model achieves 
significant success in temperature control and can be 
integrated into different cabinets independently of PID 
parameters. 

 There are many control methods for humidity control in 
climatic chambers, the most common of which is the feedback 
control method with PID. Depending on the humidity reading 

inside the chamber, dehumidification or humidification 
systems are operated. 

 Since the test condition is a certain relative humidity value 
at a certain temperature, feedback is used in almost all systems 
by reading the relative humidity. If the reading is different 
from the target value, the system reacts accordingly. During 
step transitions in the test jams, the humidity target suddenly 
changes and the system is controlled according to the new 
humidity. A simple humidity test recipe is described in Table 
2.  

TABLE II.  SAMPLE OF HUMIDITY TEST RECIPE. 

Step No. Target Temperature °C Target Humidity %RH 

Step 0 50 50 

Step 1 60 40 

Step 2 70 30 

Step 3 40 40 

Step 4 70 30 

Step 5 30 30 

 

When moving from step 0 to step 1, the relative humidity 

value decreased from 50%Rh to 40%Rh in the current control 

method. The control software starts the dehumidification 

system for this drop demand. This decision is incorrect 

because the required amount of water vapor (Absolute 

Humidity) has increased from 41.6 g/m3 to 51.9 g/m3. 

Therefore, the system should operate the humidification 

system instead of dehumidification.  
 Because of this wrong decision, a high-powered 
dehumidification system worked unnecessarily and the 
amount of water vapor (absolute humidity) available in the 
test volume decreased. Therefore, the humidification system 
will run longer than it should, and the test efficiency will be 
significantly reduced, and the duration of the test will be 
prolonged. Table 3 provides a summary of the operating 
requirements for dehumidification and humidification 
systems in a relative humidity-controlled system. 

TABLE III.   HUMIDITY TEST RECIPE IN CONVENSIONAL METHOD. 

 Step 
Temp 

°C 

Hum. 

%RH 

Dehumidifier 

behavior 

during stage 

change. 

Humidifier 

behavior 

during stage 

change. 

Is the 

operation 

right or 

not? 

0 50 50 N/A N/A N/A 

1 60 40 Opened Closed NOT 

2 70 30 Opened Closed NOT 

3 40 40 Closed Opened NOT 

4 70 30 Opened Closed NOT 

5 30 30 Closed Closed NOT 

 

The relative humidity equation in the traditional control 

software is as in Equation 1.[21] 

 

𝑅𝐻 =
100 exp(1.8096+

17.269 𝑇𝑤
273.3+𝑇𝑤

)−7.866∗10−4∗𝑃(𝑇−𝑇𝑤)(1+
𝑇𝑤
610

)

exp(1.8096+
17.269 T

273.3+T
) 

  (1) 

 

Here Tw is the wet bulb temperature (°C), T is the dry bulb 
temperature (°C) and P is the station level pressure (hPa). 
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Using two thermometers, the relative humidity inside the 
cabin is measured indirectly. 

Wet-bulb temperature Tw is the temperature at which 
water (liquid or solid), by evaporating into moist air at dry 
bulb temperature t and humidity ratio W, can bring air to 
saturation adiabatically at the same temperature Tw while 
total pressure P is constant.  

If pressure is not known, the following table of standard 
pressures can be used as a first guess. Standard Sea level 
1013.25 hPa, or 1 atmosphere 9atm), or 29.92 inches of 
mercury. [20] 

TABLE IV.  PRESSURE AND ALTITUDE TABLE. 

Station 
Altitude (m) 

0-250 
251-
500 

501 - 
750 

1001 - 
1250 

1251 - 
1500 

Pressure 
(hPa) 

998.3 969.0 940.4 912.5 885.2 

 

 Given an accurately measured station level pressure, the 
calculated relative humidity is expected to differ by 3% from 
the value calculated using a pressure in the table above. 

 The equation for calculating absolute humidity (grams/m3) 
using the relative humidity equation integrated into the control 
software is as in equation 2.   

 

𝐴𝐻 =
6.112∗𝑒𝑥𝑝(

17.269 𝑇

273.3+𝑇
)∗𝑅𝐻∗2.1674

273.15+𝑇
        (2) 

 

The temperature (T) given in the equation is expressed 

in degrees Celsius, the relative humidity (RH) in % and e 

(exp) in natural logarithm base 2.71828. [20] 

After the new equation is integrated into the software, 

the new behavior of the behavior in Table 3 according to the 

new algorithm is as shown in Table 4. 

TABLE V.  HUMIDITY TEST RECIPE IN USING ABSOLUTE HUMIDITY 

EQUATION METHOD. 

 

S
t
e
p 

Temp 

°C 

Hum 

%RH 

AH 

grams/

m3 

Dehum. 

behavior 

during 

stage 

change. 

Hum. 

behavior 

during 

stage 

change. 

Is the 

operation 

right or 

not? 

0 50 50 41,6 N/A N/A N/A 

1 60 40 52,3 Closed Opened RIGHT 

2 70 30 59,9 Closed Opened RIGHT 

3 40 40 20,5 Opened Closed RIGHT 

4 70 30 59,9 Closed Opened RIGHT 

5 30 30 9,1 Opened Closed RIGHT 

 

Before and after the change of control method, a 25°C 

50% RH test was performed in a climatic test chamber. 

Relative humidity-controlled test result is shown in Figure 

10. 

 
Fig 10. Test result using Relative Humidity based controller. 

 

Absolute humidity-controlled test result is shown in Figure 

11. 

 
Fig 11. Test result using Absolute Humidity based controller. 

IV. RESULTS 

When we compare the two test results, the number of 
fluctuations in the humidity value in the relative humidity-
based control is quite high and the value range is measured as 
±4%RH. In the absolute humidity-based control, the 
fluctuation in the humidity value was measured as ±1 %RH. 
No fluctuation was observed as a result of the test. 

The absolute humidity-based control increased the power 
efficiency and test accuracy. In climatic test chambers, the 
accuracy of temperature and humidity distribution, control 
system stability and adequacy of system performance are of 
great importance for successful testing. Therefore, the 
developed control systems need to be optimized with all 
parameters. In this study, an innovative LSTM-based deep 
neural network model that is independent of parameters and 
can reach the temperature values in the optimum time, as an 
alternative to the current PID control algorithm's success in 
temperature control, and absolute humidity control software 
has been developed instead of the relative humidity control 
algorithm. The LSTM network is trained with the outputs 
obtained from a designed PID system. The designed PID 
control system is a successful system that can control the 
temperature outputs and resistance output levels 
proportionally. Firstly, the PID system and then the developed 
LSTM network model were tested on a test recipe containing 
randomly generated target temperature setpoints.  

The LSTM network was trained and tested with various 
hyperparameters to determine the optimal parameters. The 
results are shown on graphs comparing the performance of the 
LSTM network and the PID system. The LSTM network 
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control system, operated independently from the PID system, 
gave successful results on different test prescriptions. By 
changing the humidity control method, the dehumidification 
and humidification systems are operated at the right time, 
preventing unnecessary energy consumption and preventing 
the systems from working more than necessary due to 
improper control. Experiments on different test recipes prove 
that both models give successful results. 

V. CONCLUSION 

Nowadays, artificial intelligence and deep learning 
applications are being successfully used in many fields and are 
becoming increasingly widespread. The learning capabilities 
of deep learning algorithms can be seen as an important 
innovation, especially for eliminating some deficiencies in 
control systems. The control system developed in this 
direction can be trained with a high-dimensional data set and 
tested in real systems and contribute to obtaining the optimum 
solution.  

In addition, switching from the traditional relative 
humidity-based control used in humidity test chambers to the 
more complex absolute humidity-based control can extend the 
product life and obtain more stable test results by ensuring that 
the system equipment operates only when needed. However, 
it can be difficult to achieve sufficient optimization of a 
detailed model within a given period of time due to the 
optimization process requiring long computational times. For 
this reason, experimental results should be compared with 
calculations to make optimal choices. Considering all these 
studies, it is seen that developing an innovative control system 
based on deep learning will make significant contributions to 
the industry and the literature. The use of innovative control 
systems based on deep learning and absolute humidity 
methods can play a crucial role in improving the energy 
efficiency of climatic test chambers, which can lead to more 
efficient and effective use of these chambers in smart grid 
systems. This can ultimately contribute to a more sustainable 
energy future by reducing energy waste and increasing the 
overall energy efficiency of the grid. 
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