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Abstract— This research presents the innovate method of 
Day-Ahead Optimal Power Flow (DA-OPF) management of 
Smart Community Microgrid (SCM) with a wind turbine 
generation and Centralized Energy Storage System (CESS). The 
developed DA–OPF is based on the Deep Learning (DL) Long 
Short-Term Memory (LSTM) network for the wind generation 
and community consumption data forecast. The Optimal Power 
Flow (OPF) problem is formulated to reduce Locational 
Average Marginal Price (LAMP) and is solved by Mixed-
Integer Nonlinear Programming (MINLP) model. To take into 
account the forecast error of forecast system, also as its influence 
on the SCM system stability, this method includes the evaluation 
system based on the Monte-Carlo Simulation (MCS). This 
allows developing DA-OPF strategy assure not only the optimal 
operation, but also the resilience and stability of the SCM. The 
evaluation of the proposed method was realized on the case of 
conversion of real conventional community into SCM. This was 
made by the integration of CESS, a wind turbine and developed 
DA-OPF management. The practical evaluation and subsequent 
economic analysis show the efficiency of the proposed DA-OPF 
method and its good effect on reducing community energy price 
and to respect the energy transition process. 

Keywords— microgrid; deep learning; optimal power flow; 
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I. INTRODUCTION  
The goal of the European Union for the coming decades is 

to increase the share of Renewable Energy (RE) sources in the 
total energy balance to 45% and reduce carbon dioxide 
emissions by 55%  by 2030 according to Climate Target Plan 
for the energy transition for green growth [1]. From one side, 
this process provides for an increase in RE sources to respect 
these goals [2] and large capacities of RE sources will be 
installed [3]. On the other hand, the intermittent generation of 
these sources will lead to perturbations in the conventional 
Distribution Grid (DG) and it will no longer be able to assure 
the reliable energy supply [4]. DG will need more flexibility 
to compensate for this impact and the issue of flexibility will 
become very important, especially local flexibility that can 
help to stabilize the power grid locally closer to the place 
where it is necessary [5]. 

Small towns, villages and even districts can become not 
only consumers of electricity and energy, but sources of 
electricity for the DG as well as sources of flexibility for the 
grid (compensate the intermittence of RE sources or support 
DG reliability locally) [6]. They can form a Smart Community 
Microgrids (SCM), and that electricity or flexibility can be 
traded for financial gain in markets specifically designed for 
that purpose, but this requires the preliminary negotiations [7]. 
Therefore, the management of SCN requires a predicted and 
generally day-ahead management forms  [8].  

Therefore the purpose of this study is to show an 
innovative method of SCM microgrid management through 
the innovate Day-Ahead Optimal Power Flow (DA-OPF) 
management system. The forecast part of this algorithm is 
assured by the Deep Learning (DL) Long Short-Term 
Memory (LSTM) neural network, which has proven it 
efficiency in predicting of long data sequences [9], [10]. The 
optimization problem is solved with Mixed Integer Nonlinear 
Programming (MINLP) which allows taking into account the 
non-linearity of some components of which there are a lot in 
the DG [11], [12]. The another innovativeness of this method 
is that this algorithm takes into account the forecast error and 
its associated impact on SCM operation. This is realized with 
an evaluation block that uses Monte Carlo Simulation (MCS) 
to generate possible moves from the initial data. Ultimately, a 
practical application of this DA-OPF to a real community will 
be presented to show the efficiency and effectiveness of this 
method. 

II. DAY-AHEAD OPTIMAL POWER FLOW OPERATION  
Fig. 1 shows the graphical representation of the proposed 

DA-OPF SCM management algorithm. This algorithm is 
dedicated to effective management of the community with a 
wind turbine and considers uncertainties caused by this 
intermittent energy source.  

 

Fig. 1. Graphical representation of the developed DA-OPF SCM 
management algorithm. 

This control method starts with a collection of existing 
SCM data. Then this data along with historical data such as 
history of energy consumption, wind generation, weather and 
others enter in the block of “Deep Learning LSTM” data 
forecast to generate the day ahead community wind turbine 
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generation and the community energy consumption forecasts, 
respectively. More precise the  LSTM neural network 
dedicated to SCM forecast is presented in [10], [13], [14].  

After that, the system collects the electricity price forecast 
for the day-ahead from the power grid manager, also the cost 
of load shedding of fixed and flexible load from the SCM and 
all this data goes into the system of “OPF” resolved by MINLP 
which will be presented below. The OPF system finds an 
optimization function and finds a global optimal solution to a 
complex optimization problem. Then it generates the DA-
OPF SCM operation strategy which, under all given 
circumstances, minimizes the operational function more than 
all other solutions. This method aimed to minimize the 
Locational Average Marginal Price (LAMP) as a very 
characteristic parameter for SCMs [10]. Since we cannot 
influence the production of the wind turbine and partially 
affect SCM energy consumption (flexible load), the obtained 
optimal DA-OPF strategy is to controlling the of charging and 
discharging reference of the CESS, it is possible to control the 
power flows from/to the distribution grid [12]. 

Before applying obtained DA-OPF strategy of SCM 
operation, it is necessary to take into account the forecast error 
of “Deep Learning LSTM” block, since these errors can lead 
to deviations of the real parameters compared to the predicted 
ones, and as a consequence to exceed of the system limits and 
to bring it to SCM collapse and blackout. For this, the “DA-
OPF evaluation” system is proposed and shown in Fig. 2. 

This system uses Monte Carlo Simulation (MCS) to 
generate a day-ahead wind turbine generation profile and 
SCM energy consumption profile taking into account possible 
evaluation due to forecast uncertainties. In more detail, this 
method is presented in [15], [16]. Then these profiles enter in 
the “OPF” that will be described above. Solving the 
optimization problem, the “OPF” generates optimal control 
strategy for this case, which will be stored in the “collection 
of results” block. The cycle will repeat until the stopping 
criterion presented in (1) riches the minimum limit:  

 

Fig. 2. Graphical representation of the “DA-OPF evaluation” system of the 
developed DA-OPF SCM management algorithm. 

 𝜎𝜎(𝑋𝑋)
√𝑁𝑁𝐸𝐸(𝑋𝑋)

≤ 𝜀𝜀 (1) 

where 𝐸𝐸(𝑋𝑋)  is the mean value of LAMP for considered 
simulated case and 𝜎𝜎(𝑋𝑋) its standard deviation, 𝑁𝑁 represent 

the number of simulation samplings, 𝜀𝜀 represents the chosen 
maximum simulation error.  

As soon as the stop criteria is met, the system analyzes all 
received profiles to identify possible critical moments at 
which the operating parameters may exceed the operating 
limits and lead to the collapse of the SCM supply system.  

In the case that the “DA-OPF evaluation” system did not 
show exceeding the limits of all components of SCM, this 
strategy is considered feasible and will be applied to the SCM 
management during the day-ahead. Otherwise, this strategy 
will be considered dangerous and possible to lead to the 
collapse of the energy system. In this case, reconfiguration of 
the system composition is required and the whole process of 
this algorithm should start again. 

Next chapter will present more precisely the OPF 
optimization method used in this DA-OPF algorithm. 

III. MIXED INTEGER NONLINEAR OPTIMIZATION METHOD FOR 
OPF 

The objective function of developed DA-OPF provided to 
be resolved through MINLP method presented in [17]–[19]. It 
is dedicated to minimize the operation cost of SCM and is 
presented in (1) 

 𝑓𝑓(𝑥𝑥) = 𝑓𝑓𝑔𝑔(𝑔𝑔+,𝑔𝑔−) + 𝑓𝑓𝑠𝑠(𝑠𝑠0,𝑝𝑝𝑐𝑐 ,𝑝𝑝𝑑𝑑) (1) 

The first part of (1) represent the cost of electricity 
originating from or going to the grid with corresponding costs 
and is shown in (2) 

 𝑓𝑓𝑔𝑔(𝑔𝑔+,𝑔𝑔−) = ∑ ∑ �𝐶𝐶𝑔𝑔+𝑡𝑡𝑡𝑡 (𝑔𝑔𝑔𝑔+𝑡𝑡𝑡𝑡 ) + 𝐶𝐶𝑔𝑔−𝑡𝑡𝑡𝑡 (𝑔𝑔𝑔𝑔−𝑡𝑡𝑡𝑡 )�𝑡𝑡𝑡𝑡  (2) 

where 𝑡𝑡 represents a time period, 𝑖𝑖 is the unit index (index of 
fixed or flexible load, index of supply power lines, etc.), 𝑔𝑔𝑔𝑔+𝑡𝑡𝑡𝑡  
and 𝑔𝑔𝑔𝑔−𝑡𝑡𝑡𝑡  are the energy injected to or absorbed from the grid 
at time 𝑡𝑡 , for unit 𝑖𝑖  respectively, 𝐶𝐶𝑔𝑔+

𝑡𝑡𝑖𝑖  and 𝐶𝐶𝑔𝑔−𝑡𝑡𝑖𝑖  are the cost 
functions for the injected or absorbed active power to or from 
the power grid at time 𝑡𝑡 and unit 𝑖𝑖 respectively.  

The second part of (1) take in consideration the stored 
energy cost at the beginning and at the end of each considered 
period and is shown in (3) 

 𝑓𝑓𝑠𝑠(𝑠𝑠0,𝑝𝑝𝑐𝑐 ,𝑝𝑝𝑑𝑑) = 𝐶𝐶𝑠𝑠0𝑆𝑆𝑆𝑆0 − (𝐶𝐶𝑠𝑠0𝑡𝑡 𝑆𝑆𝑆𝑆0 + 𝐶𝐶𝑐𝑐𝑝𝑝𝑐𝑐 + 𝐶𝐶𝑑𝑑𝑝𝑝𝑑𝑑) (3) 

where 𝑆𝑆𝑆𝑆0 represents the initial stored energy in the storage 
unit 𝑖𝑖 , 𝑝𝑝𝑐𝑐  and 𝑝𝑝𝑑𝑑  are the charged or discharged power of 
storage unit 𝑖𝑖 at the moment 𝑡𝑡 respectively, 𝐶𝐶𝑠𝑠0 and 𝐶𝐶𝑠𝑠0𝑡𝑡  are 
the price vectors linked to reaching the stored energy 𝑆𝑆𝑆𝑆0 in 
the storage unit 𝑖𝑖  in the 𝑡𝑡 = 0  or in the terminal end-of-
horizon base state respectively, 𝐶𝐶𝑐𝑐 and 𝐶𝐶𝑑𝑑 are the vector prices 
for terminal charging or discharging contributions, 
respectively, of storage unit 𝑖𝑖 at the end-of-horizon terminal 
base states. 

Considering constraints, the general OPF equality constraints 
𝑞𝑞𝑡𝑡 and inequality 𝑡𝑡𝑡𝑡are presented in (4) and (5) respectively:  

 𝑞𝑞𝑡𝑡(𝜃𝜃𝑡𝑡 ,𝑉𝑉𝑡𝑡 ,𝑝𝑝𝑡𝑡) = 0 (4) 

 𝑡𝑡𝑡𝑡(𝜃𝜃𝑡𝑡 ,𝑉𝑉𝑡𝑡 ,𝑝𝑝𝑡𝑡) ≤ 0 (5) 
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Where 𝜃𝜃𝑡𝑡, 𝑉𝑉𝑡𝑡  and 𝑝𝑝𝑡𝑡 represent voltage angels, magnitudes and 
active power injections at time 𝑡𝑡. 

 𝑜𝑜𝑡𝑡𝑡𝑡𝑝𝑝𝑚𝑚𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡 ≤ 𝑝𝑝𝑡𝑡𝑡𝑡 ≤ 𝑜𝑜𝑡𝑡𝑡𝑡𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡  (5) 

Where 𝑜𝑜𝑡𝑡𝑡𝑡 represents a commitment state in a binary form for 
the unit I at the time t (1 for on-line unit, 0 for off-line), 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡  
and 𝑝𝑝𝑚𝑚𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡  represent the active injection limits for unit 𝑖𝑖 at the 
time 𝑡𝑡. 

The storage operation and level limits, respectively, are 
presented in (6)-(8): 

 𝑝𝑝𝑡𝑡 ≤ 𝑝𝑝𝑐𝑐𝑡𝑡 + 𝑝𝑝𝑑𝑑𝑡𝑡  (6) 

 𝑝𝑝𝑐𝑐𝑡𝑡 ≤ 0 (7) 

 𝑝𝑝𝑑𝑑𝑡𝑡 ≥ 0 (8) 

 𝑆𝑆𝑆𝑆−𝑡𝑡𝑡𝑡 ≥ 𝑆𝑆𝑚𝑚𝑡𝑡𝑚𝑚 (9) 

 𝑆𝑆𝑆𝑆+𝑡𝑡𝑡𝑡 ≥ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 (10) 

Where 𝑆𝑆𝑆𝑆+
𝑡𝑡𝑖𝑖 and 𝑆𝑆𝑆𝑆−𝑡𝑡𝑖𝑖 represent the stored energy upper or lower 

limits, respectively, in the storage unit I at the end of period t 
which is calculated endogenously. More precisely the 
optimization function and other constraints are presented in 
[11]. 

Below will be presented the practical application of the 
proposed management system on the real data community 
case. 

IV. PRACTICAL EVALUATION  
To evaluate efficiency of developed original DA-OPF 

method dedicated to SCM with wind turbines, it was chosen 
by the conventional rural community in Eymoutiers, France. 
This commune has around 1200 inhabitants and around 200 
households, with maximum actual consumption 1500 kW. 
This research study the case of conversion of this conventional 
rural community to SCM through installation of centralized 
energy storage and a wind turbine. The existing infrastructure 
of the community consisted of power line BUS1-BUS3 which 
links the community to the main distribution grid as shown in 
Fig. 3.  It is assumed that due to the constant growth of the 
community (up to 1800 kW of installed power), the existing 
infrastructure will no longer be able to assure the reliable 
supply of community related to the saturation of the main 
power line.  

There are two solutions to get out of this situation. The 
first one is a conventional solution: to build a second power 
line to increase the alimentation capacity from the main 
power grid. The second solution is to create an SCM through 
  

 
Fig. 3. The general structure of the studied SCM : existing and expanded 

infrastructure. 

the installation of a wind turbine as a source of renewable 
energy and a centralized energy storage system to manage 
local energy flows. For actual evaluation, the second case will 
be selected as the most appropriate for energy transition. Fig. 
3 will show these transformations in detail. The installation 
of an additional two power lines to connect a wind turbine 
will bring the system to the shape of a triangle, but their 
length can be neglected compared to the length of the main 
power line. A CESS will be connected to BUS3 and wind 
turbine to BUS2. Thus, the resulting description on obtained 
SCM is presented in TABLE I.  

TABLE I.  GENERAL DATA OF OBTAINED SCM 

Topology 3-bus triangle network 

Power supply 
line 2000 kVA limit, power line at bus 1 

Load 
(Consumption) 

1800 kW total load at bus 3 
the fixed load is curtailable at €1/kWh 

the flexible load is curtailable at 35c€/kWh 

Branches 
1500 kVA limit, line 1–3 
1000 kVA limit, line 1–2 
1000 kVA limit, line 2–3 

Wind turbine unit at bus 2 with 1500 kW output in the 
nominal case 

Storage 

Capacity: 5000 kWh unit at bus 3 
Max Charging/Discharging Rate: 3000 

kW/hour 
Charged/discharged electricity price is 35 

c€/kWh 

The next step of practical evaluation is to apply the 
developed DA-OPF management methodology to this SCM. 
For actual study, March 21, 2022, is selected as the day of the 
strategy creation and March 22 is selected as the day-ahead. 
As described earlier, the first step is to get the wind turbine 
generation forecast and the community energy consumption 
forecast for the day-ahead. For this is used DL LSTM neural 
network. Fig. 4 shows the example of wind generation 
forecast compared to real values. It can be seen that the input 
data are the historical data of wind generation also as the 
historical and actual data of wind speed forecast. For 
community energy consumption was taken the historical data 
of consumption. It forecast value can be seen in Fig. 6 in the 
main blue line. 
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Fig. 4. Example of wind generation data forecast by DL LSTM network. 

To evaluate the efficiency of data forecast the Mean 
Absolute Percentage Error (MAPE) and Mean Absolute Error 
(MAE) was chosen and its values are presented in TABLE II 
[14].  It can be seen that the forecast errors for wind 
generation are much larger than for energy consumption, 
which is related to the difficulty of forecasting and with the 
large discontinuity of wind turbine generation. 

TABLE II.  MAE AND MAPE OF DATA FORECAST 

 Wind generation Community 
consumption 

MAE 381.4 kWh 78 kWh 

MPAE (%) 23.87 % 7.3 % 

The input of the “OPF” system are obtained forecasts for 
day-ahead presented in Fig. 5 and Fig. 6 main lines, the grid 
electricity price profile presented in Fig. 9, the dotted line and 
all other SCM system data. Then, the “OPF” system resolves 
the optimization problem and create the DA-OPF optimal 
SCM operation strategy. Obtained strategy for day-ahead can 
be seen in the Fig. 7 and Fig. 8, main lines. Fig. 9 in main line 
show obtained LAMP for given DA-OPF strategy. 

The next step is to evaluate the obtained strategy to check 
that it does not exceed the unit limits of SCM units and that 
its use will not lead to the energy collapse of this community 
in day-ahead. Fig. 5 - Fig. 9 shows the evaluation results of 
the proposed DA-OPF strategy. 

 
Fig. 5. DA-OPF input data: cyan line - the wind generation forecast, other 

lines – possible evaluation of wind generation profile due to forecast 
error (from MCS simulation). 

 
Fig. 6. DA-OPF input data: blue line - the community consumption 

forecast, other lines – possible evaluation of community consumption 
profile due to forecast error (from MCS simulation). 

 
Fig. 7. DA-OPF output data: green line – the profile of OPF community 

storage management strategy for day-ahead, other lines – possible 
deviation of OPF community storage management strategy due to 
forecast error (from OPF). 

 
Fig. 8. DA-OPF output data: red line – expected grid operation due to the 

application of OPF community storage management strategy for day-
ahead (from Fig. 8), other lines – possible deviation of grid operation 
due to forecast error (from OPF). 

 
Fig. 9. DA-OPF: grin dotted line – grid electricity dynamic price for day-

ahead (DA-OPF input), the brown line – LAMP profile for DA-OPF 
strategy for day-ahead (from OPF), other lines – possible deviation of 
LAMP due to forecast error (from OPF). 

It can be seen that the “DA-OPF evaluation” system, for 
each combination of each parameter, verify not exceeding 
functional limits (power lines limits, unit limits, 
charge/discharge ramp limits, etc.). In this case, after 61 
evaluations, the “DA-OPF evaluation” system did not find an 
excess of any operational parameters and this strategy, and 
thus the proposed DA-OPF strategy is confirmed for day-
ahead SCM operation. TABLE III shows operational values 
of this strategy.   

TABLE III.  MAE AND MAPE OF DATA FORECAST 

 Operation value 

Wind generation 15615 kWh 

Community consumption 26061 kW 

CESS operation 6226/-6226kWh 

Grid operation 10845 kWh 

Grid price (average) 30.5 c€/kWh 

LAMP (average) 29.91 c€/kWh 

How it can be seen, for this day, the wind generation 
represents 15615 kWh, the community consumption is 
26061kWh, and due to DA-OPF the energy charged from the 
grid represents only 10845 kWh. This table with Fig. 9  show 
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that the LAMP for this day is generally lower or equal than 
the grid electricity price due to developed DA-OPF.  

For the conventional case, the community must pay 8245 
€ to DG for supplied electricity. In the case of SCM 
deployment but without proposed DA-OPF strategy, the 
community bill is 3626 euro, what represents 56% of 
reduction of community electricity price.  Application of 
developed innovated DA-OPF brings the SCM electricity 
price to 2898 euro, what represents 20% of reduction 
compared to SCM without DA-OPF and a 65% of reduction 
compared to conventional community, without changing the 
system parameters and for the same operating conditions. That 
is, in other words, only due to the intelligence of this method. 
Thus, the proposed DA-OPF management system shows its 
effectiveness and profitability for use in future SCM 
communities with wind turbines and for the continuation of 
the process of energy transition also as to feed flexibility to 
the DG locally (response to dynamic pricing). 

V. CONCLUSION 
This research presents the innovate method of Day-Ahead 

Optimal Power Flow management of Smart Community 
Microgrid with a wind turbine generation and Centralized 
Energy Storage System. The developed DA–OPF is based on 
the Deep Learning Long Short-Term Memory network and 
the Optimal Power Flow problem is formulated by Mixed-
Integer Nonlinear Programming model. The Monte-Carlo 
Simulation takes into account the forecast error and its 
influence on the SCM system stability. The evaluation of the 
proposed innovated DA-OPF management method was 
realized in the case of conversion of real conventional 
community into SCM. This was made by the integration of 
CESS, a wind turbine and developed DA-OPF management. 
The practical evaluation and subsequent economic analysis 
show that the proposed innovated DA-OPF method allows 
reducing the SCM electricity cost by 20% compared of SCM 
with classical management method, and by 65% compared to 
conventional community before SCM conversion.  It's all 
without changing the system parameters and for the same 
operating conditions. That is, in other words, only due to the 
intelligence and efficiency of the developed operation method.  
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