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Abstract—Software defect prediction is one of the critical 
fields that is related to software quality. The accuracy of 
prediction models relies on how the features are related to class 
value. However, this field has limitations of the lack of robust 
dataset in previous studies. Therefore, this research paper aims 
to develop new dataset to fill the gap of research area. So, we 
train the J48, NB, and MLP algorithms on our new dataset, 
JM1and KC1. The results indicated that our proposed new 
dataset performed better in terms of accuracy, recall, and 
precision. 
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I. INTRODUCTION  
Software defect prediction is one of the most important 

areas of research in the field of software quality. Defect 
prediction in software is the technique of detecting areas of a 
software system that may have flaws. Utilizing Defect 
Prediction models early in the software lifecycle allows 
practitioners to focus their testing personnel so that areas of 
the software system that are known to be resistant to defects 
are tested more thoroughly than other parts of the software 
system.[1]. This reduces the cost of resources during 
production while also easing the maintenance effort. Software 
Metrics, which are observable aspects of the software system, 
and fault data from a linked software project are used to 
develop defect prediction models in two methods. The defect 
prediction model can then be used to forecast problems in 
future software projects, allowing practitioners to identify 
elements of a software system that are vulnerable to defects 
[2]. 

Today, as more complex software systems evolve, the 
incidence of software defects can be said to be increasing 
proportionally. These flaws have the potential to trigger 
serious issues in critical projects. Not only is software defect 
detection a time-consuming operation, but it also lacks a 
standard tool. There have been attempts to standardize 
software quality measurements, and ISO/IEC 9126 is one of 
them is introduced to define software quality attributes. 
Furthermore, such techniques may be used to evaluate the set 
of metrics that should be considered when determining 
whether a software flaw exists. The overall cost of the project 
would be lower if faulty modules could be predicted, and the 
project's performance rate would be higher [3]. 

Depending at the defect prediction goals, the machine-
learning strategies used to differ. The prediction module's 
defect orientation is centered after the researchers have 
hooked up numerous is about to first-class grain (for example, 
record stage or class), that is generally finished the use of 
category methods together with LR, Bayesian networks, and 
DM trees. Setting the module to coarse grain (for instance, on 
the packet or subsystem stage) reduces the variety of mistakes 

or flaws within the prediction module, which is generally 
carried out through regression analysis. In addition to 
conventional learning strategies, lively learning and semi-
supervised learning are gaining popularity [4]. 

 
Fig. 1. Overview of Software Defect Prediction 

II. RELATED WORKS 
Many studies have been investigated in field of SDP to 

improve the results of such prediction models. In [5], 
eenhanced software prediction was achieved by a built-in 
machine learning algorithm focused on the regression method 
developed by using a collection of Factor predictors. By the 
amount of faults, They defined the combination of each 
predictor variable, they used 10 PROMISE datasets including 
a total of 22,838 samples. The regression method induces a p-
value of < 0.001 with a modified R-square of 98.6 percent. We 
often apply a systematic design simulation approach to predict 
the number of computer defects. We find various 
combinations of predictor factors, including amount defect 
velocity, amount defect intake period, and amount defect 
intensity. 

This study [6] presented the features with automatic 
predicting systems from a viewpoint of controls reliability and 
supervised learning and the analysis of imbalanced NASA sets 
of data (JM1, KC3, MC1). They were used for research on 
Bagging Bayesian Belief Network, LWL, Random Forest, 
C4.5, Multilayer Feedforward Neural Network, NB-K and 
SVM algorithms, the SMO algorithm has an optimal value of 
0.716, BBN of 0.704, and Random forest of 0.656, Bagging + 
Random Forest (classifier) of 0.707. 

In [7], a hyper quadtree-based K-means algorithm was 
used to predict program module faults. This paper is divided 
into two parts. First, the hyper-quadtree is used to initialize the 
K-means clustering algorithm on the software fault prediction 
dataset. The initial number of clusters and cluster centers is 
controlled by an input parameter D. Second, the initialization 
algorithm's cluster centers and number of cluster centers are 
used as input for the K-means clustering algorithm, which 
predicts faults in software modules. We propose a hyper-
quadtree-based K-means algorithm for predicting software 
flaws. The overall goal of this paper is to demonstrate how to 
use K-means without specifying the number of clusters or the 



initial cluster centers to predict software faults with a low error 
rate. We can get the initial cluster centers and the number of 
clusters by varying the value of D. The proposed algorithm is 
evaluated in comparison to various existing techniques. The 
overall error rate of the HQDK algorithm's software fault 
prediction approach is comparable to other existing 
algorithms, and HQDK has a lower error rate. At the same 
time, HQDK's accuracy is superior to other techniques 
summarize the main related works. 
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III. DRAWBACKS AND LIMITATIONS 
By reviewing the literature, we found that authors had 

limitations in their papers, and they recommended to 
overcome them in future works and those limitations are as 
follows: 

First: future studies can validate this method for estimating 
the quantity of faults in an imminent product launch the use of 
the maximum latest datasets from any software program 
company, at the same time as additionally deliberating extra 
predictor variables [8], Trying out more attribute selection 
techniques and classifiers to see how they stack up against 
their learner. examine their student in a variety of areas, 
including company credit score and breast cancer disease. 

Second: they want to enhance our DBN-based 
methodology to produce semantic characteristics for method-
level defect prediction, which can assist predict defective 
methods in software projects [9]. 

For this, by reviewing and analyzing previously used 
datasets such as JM1, CM1, and KC1 which are mostly used 
by authors and researchers in this filed. Then, we select the 
main and the common attributes of those dataset to develop 
new dataset. The new dataset was extracted from a software 
company in Jordan by advising from 3 experts’ developers. 

Our new dataset consists of 17 attributes in addition to 
class label as shown in Tabel II.  Therefore, these features 
were selected from different datasets that resulting in 

increased the correlation between the attributes and class 
label. 

TABLE I.  NEW DATASET MAIN FEATURES 

Attribute Attribute Information 

# Of linearly independent paths “Cyclomatic Complexity” 

Reduced flow graph “Essential complexity” 

DC "Design complexity" 

X “Number of operators + operands” 

NOO "volume" 

PL "Program length" 

D "difficulty" 
Int "intelligence" 

EFF "effort" 

B “Numeric” 

TE “Time estimator” 

LC “Count of lines of comments” 

BC “Flow graph” 

T_O “Total operands” 

T_OR “Total operators” 

U_O “Unique operands” 

U_OR “Unique operators” 

 

Then, the correlation between the features and class label 
was tested using SPSS method. The results indicated that the 
feature “U_O” is the most correlated attribute with class label 
of 0.2478. Nevertheless, the “EFF” and “TE” features are the 
least correlated to class label of 0.0948 for both (see Table III 
and Fig. 2). 

TABLE II.  CORRELATION RESULTS BETWEEN THE MAIN FEATURES 
AND CLASS LABEL 

Attribute Correlation 
# Of linearly independent paths 0.2017 
Reduced flow graph 0.1542 
DC 0.1779 
X 0.2328 
NOO 0.2129 
PL 0.1728 
D 0.2058 
Int 0.2368 
EFF 0.0948 
B 0.2131 
TE 0.0948 
LC 0.1316 
BC 0.2141 
T_O 0.2325 
T_OR 0.229 
U_O 0.2478 
U_OR 0.2116 

 



 
Fig. 2. The main results of attributes’ correlation 

IV. RESULTS AND DISCUSSION  
To evaluate and analyses our dataset, this study has used 

the main classical algorithms that have used in previous 
works. Therefore, we trained the JM1and KC1 datasets by 
using J48, NB, and MLP algorithms. Also, this study has 
trained the new dataset on the same algorithms. Then, we 
compare the results of J48, NB, and MLP algorithms on such 
datasets. The results show that our proposed new dataset 
outperformed the previous ones in the term of accuracy with 
value of 81.06%,81.19%, and 81.72% respectively for J48, 
NB, and MLP as shown in the tables below. 

    

TABLE III.  JM1 DATASET 

 Precession Recall Accuracy 
J48 0.759 0.795 79.504 % 

NB 0.765 0.804 80.423 % 
MLP 0.769 0.810 80.956 % 

 

TABLE IV.  KC3 DATASET 

 Precession Recall Accuracy 
J48 0.790 0.805 80.5   % 

NB 0.773 0.785 78.5    % 
MLP 0.752 0.775 77.5    % 

 

TABLE V.  NEW DATASET 

 Precession Recall Accuracy 
J48  0.766  0.811 81.06% 

NB 0.772 0.811 81.19% 
MLP 0.779 0.817 81.72% 

 

V. CONCLUSION AND FUTURE WORKS  
Artificial Intelligence (AI) is the science and engineering 

of enabling machines to demonstrate intelligence in areas such 
as visual identification, speech recognition, and decision-

making. In essence, it is the artificial version of human 
intelligence done by machines, in particular computer systems 
[9]. This study aims to propose new dataset in order to 
enhance the accuracies of prediction models in SDP field. The 
new dataset contains 17 features as long as class label. Then 
we applied the classical algorithm on our dataset and compare 
the results with others dataset from previous works. The 
results have showed that our new dataset outperformed the 
others previous datasets. In the future works, this study 
recommends using other advanced techniques such as 
ensemble methods [10] or deep learning techniques [11]. 
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