
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

New Dataset for Software Defect Prediction Model

1st Jameel Alsaraireh
Management Information Systems

Department
Cyprus International University

Haspolat-Lefkosa, Turkey
21908602@student.ciu.edu.tr

2nd Assoc. Prof. Dr. Mary AGOYI
Management Information Systems

Department
Cyprus International University

Haspolat-Lefkosa, Turkey
magoyi@ciu.edu.tr

Abstract—Software defect prediction is one of the critical
fields that is related to software quality. The accuracy of
prediction models relies on how the features are related to class
value. However, this field has limitations of the lack of robust
dataset in previous studies. Therefore, this research paper aims
to develop new dataset to fill the gap of research area. So, we
train the J48, NB, and MLP algorithms on our new dataset,
JM1and KC1. The results indicated that our proposed new
dataset performed better in terms of accuracy, recall, and
precision.

Keywords—Software Defect, Machine Learning, metrics

I. INTRODUCTION
Software defect prediction is one of the most important

areas of research in the field of software quality. Defect
prediction in software is the technique of detecting areas of a
software system that may have flaws. Utilizing Defect
Prediction models early in the software lifecycle allows
practitioners to focus their testing personnel so that areas of
the software system that are known to be resistant to defects
are tested more thoroughly than other parts of the software
system.[1]. This reduces the cost of resources during
production while also easing the maintenance effort. Software
Metrics, which are observable aspects of the software system,
and fault data from a linked software project are used to
develop defect prediction models in two methods. The defect
prediction model can then be used to forecast problems in
future software projects, allowing practitioners to identify
elements of a software system that are vulnerable to defects
[2].

Today, as more complex software systems evolve, the
incidence of software defects can be said to be increasing
proportionally. These flaws have the potential to trigger
serious issues in critical projects. Not only is software defect
detection a time-consuming operation, but it also lacks a
standard tool. There have been attempts to standardize
software quality measurements, and ISO/IEC 9126 is one of
them is introduced to define software quality attributes.
Furthermore, such techniques may be used to evaluate the set
of metrics that should be considered when determining
whether a software flaw exists. The overall cost of the project
would be lower if faulty modules could be predicted, and the
project's performance rate would be higher [3].

Depending at the defect prediction goals, the machine-
learning strategies used to differ. The prediction module's
defect orientation is centered after the researchers have
hooked up numerous is about to first-class grain (for example,
record stage or class), that is generally finished the use of
category methods together with LR, Bayesian networks, and
DM trees. Setting the module to coarse grain (for instance, on
the packet or subsystem stage) reduces the variety of mistakes

or flaws within the prediction module, which is generally
carried out through regression analysis. In addition to
conventional learning strategies, lively learning and semi-
supervised learning are gaining popularity [4].

Fig. 1. Overview of Software Defect Prediction

II. RELATED WORKS
Many studies have been investigated in field of SDP to

improve the results of such prediction models. In [5],
eenhanced software prediction was achieved by a built-in
machine learning algorithm focused on the regression method
developed by using a collection of Factor predictors. By the
amount of faults, They defined the combination of each
predictor variable, they used 10 PROMISE datasets including
a total of 22,838 samples. The regression method induces a p-
value of < 0.001 with a modified R-square of 98.6 percent. We
often apply a systematic design simulation approach to predict
the number of computer defects. We find various
combinations of predictor factors, including amount defect
velocity, amount defect intake period, and amount defect
intensity.

This study [6] presented the features with automatic
predicting systems from a viewpoint of controls reliability and
supervised learning and the analysis of imbalanced NASA sets
of data (JM1, KC3, MC1). They were used for research on
Bagging Bayesian Belief Network, LWL, Random Forest,
C4.5, Multilayer Feedforward Neural Network, NB-K and
SVM algorithms, the SMO algorithm has an optimal value of
0.716, BBN of 0.704, and Random forest of 0.656, Bagging +
Random Forest (classifier) of 0.707.

In [7], a hyper quadtree-based K-means algorithm was
used to predict program module faults. This paper is divided
into two parts. First, the hyper-quadtree is used to initialize the
K-means clustering algorithm on the software fault prediction
dataset. The initial number of clusters and cluster centers is
controlled by an input parameter D. Second, the initialization
algorithm's cluster centers and number of cluster centers are
used as input for the K-means clustering algorithm, which
predicts faults in software modules. We propose a hyper-
quadtree-based K-means algorithm for predicting software
flaws. The overall goal of this paper is to demonstrate how to
use K-means without specifying the number of clusters or the

initial cluster centers to predict software faults with a low error
rate. We can get the initial cluster centers and the number of
clusters by varying the value of D. The proposed algorithm is
evaluated in comparison to various existing techniques. The
overall error rate of the HQDK algorithm's software fault
prediction approach is comparable to other existing
algorithms, and HQDK has a lower error rate. At the same
time, HQDK's accuracy is superior to other techniques
summarize the main related works.

Database Classifie
r

Label Result Referen
ce

PROMIS
E dataset

Regressi
on

Defecti
ve or
non-
defectiv
e

R-square=98.6%,
and a p-value <0.001

[5]

 (JM1,
KC3,
MC1)

Random
forest,
Bagging,
SMO

Defect
or No
defect

The ensemble-based
learning algorithm
Bagging+Randomfo
rest (classifier) has
strong classification
capabilities.

[6]

AR3, AR4,
and AR5.
PROMISE
Software
Engineeri
ng
Repositor
y

a hyper
quadtree
-based K-
means
algorith
m has
been
applied
for
predictin
g the
faults in
the
program
module

Faulty
or non-
faulty

The total error rate of
software failure
prediction using the
HQDK approach is
comparable to other
algorithms.

[7]

III. DRAWBACKS AND LIMITATIONS
By reviewing the literature, we found that authors had

limitations in their papers, and they recommended to
overcome them in future works and those limitations are as
follows:

First: future studies can validate this method for estimating
the quantity of faults in an imminent product launch the use of
the maximum latest datasets from any software program
company, at the same time as additionally deliberating extra
predictor variables [8], Trying out more attribute selection
techniques and classifiers to see how they stack up against
their learner. examine their student in a variety of areas,
including company credit score and breast cancer disease.

Second: they want to enhance our DBN-based
methodology to produce semantic characteristics for method-
level defect prediction, which can assist predict defective
methods in software projects [9].

For this, by reviewing and analyzing previously used
datasets such as JM1, CM1, and KC1 which are mostly used
by authors and researchers in this filed. Then, we select the
main and the common attributes of those dataset to develop
new dataset. The new dataset was extracted from a software
company in Jordan by advising from 3 experts’ developers.

Our new dataset consists of 17 attributes in addition to
class label as shown in Tabel II. Therefore, these features
were selected from different datasets that resulting in

increased the correlation between the attributes and class
label.

TABLE I. NEW DATASET MAIN FEATURES

Attribute Attribute Information

Of linearly independent paths “Cyclomatic Complexity”

Reduced flow graph “Essential complexity”

DC "Design complexity"

X “Number of operators + operands”

NOO "volume"

PL "Program length"

D "difficulty"
Int "intelligence"

EFF "effort"

B “Numeric”

TE “Time estimator”

LC “Count of lines of comments”

BC “Flow graph”

T_O “Total operands”

T_OR “Total operators”

U_O “Unique operands”

U_OR “Unique operators”

Then, the correlation between the features and class label
was tested using SPSS method. The results indicated that the
feature “U_O” is the most correlated attribute with class label
of 0.2478. Nevertheless, the “EFF” and “TE” features are the
least correlated to class label of 0.0948 for both (see Table III
and Fig. 2).

TABLE II. CORRELATION RESULTS BETWEEN THE MAIN FEATURES
AND CLASS LABEL

Attribute Correlation
Of linearly independent paths 0.2017
Reduced flow graph 0.1542
DC 0.1779
X 0.2328
NOO 0.2129
PL 0.1728
D 0.2058
Int 0.2368
EFF 0.0948
B 0.2131
TE 0.0948
LC 0.1316
BC 0.2141
T_O 0.2325
T_OR 0.229
U_O 0.2478
U_OR 0.2116

Fig. 2. The main results of attributes’ correlation

IV. RESULTS AND DISCUSSION
To evaluate and analyses our dataset, this study has used

the main classical algorithms that have used in previous
works. Therefore, we trained the JM1and KC1 datasets by
using J48, NB, and MLP algorithms. Also, this study has
trained the new dataset on the same algorithms. Then, we
compare the results of J48, NB, and MLP algorithms on such
datasets. The results show that our proposed new dataset
outperformed the previous ones in the term of accuracy with
value of 81.06%,81.19%, and 81.72% respectively for J48,
NB, and MLP as shown in the tables below.

TABLE III. JM1 DATASET

 Precession Recall Accuracy
J48 0.759 0.795 79.504 %

NB 0.765 0.804 80.423 %
MLP 0.769 0.810 80.956 %

TABLE IV. KC3 DATASET

 Precession Recall Accuracy
J48 0.790 0.805 80.5 %

NB 0.773 0.785 78.5 %
MLP 0.752 0.775 77.5 %

TABLE V. NEW DATASET

 Precession Recall Accuracy
J48 0.766 0.811 81.06%

NB 0.772 0.811 81.19%
MLP 0.779 0.817 81.72%

V. CONCLUSION AND FUTURE WORKS
Artificial Intelligence (AI) is the science and engineering

of enabling machines to demonstrate intelligence in areas such
as visual identification, speech recognition, and decision-

making. In essence, it is the artificial version of human
intelligence done by machines, in particular computer systems
[9]. This study aims to propose new dataset in order to
enhance the accuracies of prediction models in SDP field. The
new dataset contains 17 features as long as class label. Then
we applied the classical algorithm on our dataset and compare
the results with others dataset from previous works. The
results have showed that our new dataset outperformed the
others previous datasets. In the future works, this study
recommends using other advanced techniques such as
ensemble methods [10] or deep learning techniques [11].

REFERENCES
[1] S. S. Rathore and S. Kumar, “A study on software fault prediction

techniques,” Artificial Intelligence Review, vol. 51, no. 2, pp. 255–327,
2019, doi: 10.1007/s10462-017-9563-5.

[2] L. H. Son, N. Pritam, M. Khari, R. Kumar, P. T. M. Phuong, and P. H.
Thong, “Empirical study of software defect prediction: A systematic
mapping,” Symmetry (Basel), vol. 11, no. 2, 2019, doi:
10.3390/sym11020212.

[3] M. Fatih Adak, “Software defect detection by using data mining based
fuzzy logic,” 6th International Conference on Digital Information,
Networking, and Wireless Communications, DINWC 2018, pp. 65–69,
2018, doi: 10.1109/DINWC.2018.8356997.

[4] Y. Yang, J. Ai, and F. Wang, “Defect Prediction Based on the
Characteristics of Multilayer Structure of Software Network,”
Proceedings - 2018 IEEE 18th International Conference on Software
Quality, Reliability, and Security Companion, QRS-C 2018, pp. 27–34,
2018, doi: 10.1109/QRS-C.2018.00019.

[5] E. A. Felix and S. P. Lee, “Integrated Approach to Software Defect
Prediction,” IEEE Access, vol. 5, pp. 21524–21547, 2017, doi:
10.1109/ACCESS.2017.2759180.

[6] J. Ge, J. Liu, and W. Liu, “Comparative study on defect prediction
algorithms of supervised learning software based on imbalanced
classification data sets,” Proceedings - 2018 IEEE/ACIS 19th
International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, SNPD
2018, pp. 399–406, 2018, doi: 10.1109/SNPD.2018.8441143.

[7] G. Sai Sundara Krishnan, R. Anitha, R. S. Lekshmi, M. Senthil Kumar,
A. Bonato, and M. Graña, “Computational intelligence, cyber security
and computational models: Proceedings of ICC3, 2013,” Advances in
Intelligent Systems and Computing, vol. 246, pp. 107–118, 2014, doi:
10.1007/978-81-322-1680-3.

[8] E. A. Felix and S. P. Lee, “Integrated Approach to Software Defect
Prediction,” IEEE Access, vol. 5, no. c, pp. 21524–21547, 2017, doi:
10.1109/ACCESS.2017.2759180.

[9] ZAIM ZULKIFLY, KYAIRUL AZMI BAHARIN, CHIN KIM GAN,
Improved machine learning model selection technique for solar
energy forcastingapplications, International journal of renewable
energy research vol 11,
no1,2021,https://doi.org/10.20508/ijrer.v11i1.11772.g8135

[10] Ammar Almasri, Erbug Celebi, Rami S. Alkhawaldeh, "EMT:
Ensemble Meta-Based Tree Model for Predicting Student
Performance", Scientific Programming, vol. 2019, Article
ID 3610248, 13 pages, 2019. https://doi.org/10.1155/2019/3610248.

[11] Alkhawaldeh, R.S., Alawida, M., Alshdaifat, N.F.F. et al. Ensemble
deep transfer learning model for Arabic (Indian) handwritten digit
recognition. Neural Comput & Applic 34, 705–719 (2022).
https://doi.org/10.1007/s00521-021-06423-7.

https://doi.org/10.20508/ijrer.v11i1.11772.g8135
https://doi.org/10.1155/2019/3610248

	I. Introduction
	II. Related works
	III. Drawbacks and limitations
	IV. Results and discussion
	V. Conclusion and future works
	References

