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Abstract— This paper focuses on performing peer-to-

peer (P2P) energy trading in a grid-tied multi-microgrid 

system (MMS). To do so, three microgrids, each 

consisting of distributed energy resources (DERs) such as 

wind turbines (WTs), solar photovoltaic (PV) systems, 

and battery storage systems, are considered. A game 

theory-based structure, supported by the Nash 

equilibrium, is then formulated to derive, and solve the 

multi-objective function (MoF) with the intention of 

allocating the correct sizing of each DER and finding out 

the optimum payoff values. The proposed optimisation 

model is also integrated with reliability index (IR) and 

levelised cost of energy (LCOE) in order to cut down the 

energy costs during intermittent periods of DERs. The 

developed framework is analysed and compared with 

other benchmark techniques on particle swarm 

optimisation (PSO) algorithm-facilitated MATLAB 

environment to conduct both P2P and peer-to-grid (P2G) 

energy trading. The simulation results: 1) verify the 

proposed MOF against various constant coefficients’ 

combination, and 2) determine the most financially viable 

model for each DER through sensitivity analysis. 

Keywords— P2P trading, P2G trading, multi-microgrids, 

cooperative game, Nash equilibrium. 

I. INTRODUCTION 

The patterns and technologies are advancing swiftly 

throughout the world to guarantee adequate energy supply in 

line with the increased amount of demand [1-2]. Peer-to-peer 

(P2P) energy trading is one of such technologies that is 

supported by the distributed energy resources (DERs) and 

facilitates the clean energy supply into the electricity grid 

through mutual negotiations [3-4]. It is characteristically 

different from the peer-to-grid (P2G) mechanism as 

participants receive unprecedented flexibility to integrate 

their preference while managing their energy [5] using a 

sustainable technology such as blockchain [6]. This has 

demonstrated its suitability both in local energy markets 

(LEMs) [7] and multi-microgrid systems (MMSs) [8]. In [9], 

feasibility study is performed to design and optimise DERs 

on real word-based scenarios.  

Game theory-driven decision-making strategies have 

extensively been exploited to construct P2P energy trading in 

recent years. In short, P2P research studies adopt two types 

of game theoretic approaches, namely cooperative and non-

cooperative game theories [10]. For instance, the non-

cooperative game theory is used, in which the Nash 

equilibrium determines the optimal solutions, to capture the 

price competitions in community and hierarchical microgrids 

(MGs) in [11] and [12] respectively. This game model is also 

employed in [13] to conduct P2P energy trading formulated 

by a single objective function (SoF) [14]. The authors in [13], 

[15-17], and [18] model appropriate designs to carry out 

bilateral bidding, study the social behaviour of the 

participants, trade energy in different sharing regions, and fix 

equilibrium trading prices respectively with the help of non-

cooperative game frameworks [19]. 

The cooperative/coalition game theory is also utilised in 

the available research studies to benefit the participants 

collaboratively. In particular, canonical coalition games are 

structured in [20-22] to incentivise the grand group first and 

then payoffs are allocated fairly between the participating 

members. The utilisation of this type of cooperative game is 

also noticeable in [23] to manage congestion under P2P 

trading among MGs. Furthermore, coalition formation games 

are applied in [24] and [25] to design optimal coalitions and 

increase financial benefits respectively [26]. Moreover, the 

coalition graph game is exercised in [27] to maintain the 

network management. 

These research studies primarily focus on SoF as small-

scale MGs’ P2P operations are considered. However, several 

microgrids constitute an MMS — that has a number of 

objectives in mind while settling P2P transactions and thus 

forms a multi-objective function (MoF), which needs to be 

analysed thoroughly for wide-scale P2P trading. To this end, 

this paper proposes a game-empowered structure to solve an 

MoF for an MMS model, using levelised cost of energy 

(LCOE) and reliability index (IR), to evaluate the correct 

sizing of each DER, wind turbines (WTs), solar photovoltaic 

(PV) systems, and battery storage systems) of each MG and 

reduce the annual cost of the network. The robustness of the 

proposed approach validated by rigorous analytical analysis 

and simulation results, in which real data of three Western 

Australian suburbs are taken into account. 

The remainder of this paper is organised as follows. 

Section II illustrates the structure of a market model. Problem 

formulation is described in Section III. Simulation results and 

analysis are given in Section IV. Lastly, the conclusion and 

future work are outlined in Section V. 

II. ARCHITECTURE OF PROPOSED MODEL 

To structure the MMS, three different microgrids based 

on Australian data are considered for P2P energy trading. Fig. 

1 exhibits the flow of energy of traditional P2G and P2P 

energy trading within a simple network consisting of these 

microgrids. This case study considers load profile; solar PV 
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Fig.  1. Energy flow for P2P and P2G trading. 

radiation; and wind speed data of Laverton, Mount Magnet 

and Wahroonga and assumes them as MG-1, MG-2 and MG-

3, respectively. Laverton has a wind speed between 5 and 7 

m/s on average, and everyday temperature varies between 17 

°C (winter) and 36 °C (summer) [28-29]. On the other hand, 

the Mount Magnet temperature changes from 18.8 °C 

(winter) to 37.9 °C (summer) while the variation in the 

average wind speed stays between 5 and 6 m/s [30-31]. 

Similar trend is also noticeable in Wahroonga, its average 

wind speed fluctuates between 4 and 6 m/s on average, and 

the average summer temperature drops from 27 °C to 11 °C 

in winter [32]. 

The proposed model takes a set of three MGs into 

account, and eight assets each of variable size in total. They 

comprise one or more WTs, solar PVs, and battery units in 

total to supply an average load of 1 MW as shown in Fig. 2. 

In particular, this case study is conducted on three Australian 

townships that are operating as interconnected microgrids 

and accommodates local energy markets to perform 

traditional P2G and P2P energy trading. The residential data 

are assumed to be LEM data at this stage, and small-scale 

DERs are considered to be connected with the main grid 

through modern smart meters to monitor and track the energy 

flow [33]. 

III. METHODOLOGY 

 The intention of this work is to create a theoretical 
framework and the main objective is to determine optimal 
sizing of solar, wind, and  battery assets and minimise the cost 
of energy and power loss. A cooperative game-driven MMS 
structure is developed; wherein WTs, solar PVs, and battery 
storages are considered as three defined players for each MG 
and they are symbolised by W, S, and B respectively. Further, 
optimum payoff values and correct sizing of players are 
determined through setting up strategic spaces.. In this study, 
government subsidies are not considered that can increase FiT 
values. The case study is effective if FiT values are closer to 
wholesale or retail energy price and not artificially inflated 
through subsidies and premiums. 

To achieve optimum payoff values, an 𝑀𝑜𝐹 is formulated 

based on the benchmarks of 𝐿𝐶𝑂𝐸  and 𝐼𝑅  [35-36]. The 

𝑀𝑜𝐹 for microgrid 𝑛, ∀𝑛 ∈ 𝑁, is: 

𝑀𝑜𝐹 = 𝑀𝑖𝑛(𝐾1 ∗ 𝐿𝐶𝑂𝐸 + 𝐾2 ∗ 𝐼𝑅) (1) 

 

Fig. 2. The architecture of the proposed multi-microgrids system. 
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where 𝐾1 and 𝐾2 are the constant coefficients for the LCOE 

and the 𝐼𝑅, respectively, with ranges are set as 0< 𝐾1, 𝐾2 <1. 

In this paper, both objective functions are considered as 

equally important; therefore, values for their constant 

coefficients are equally divided. 

The levelised cost of energy (𝐿𝐶𝑂𝐸) is: 

𝐿𝐶𝑂𝐸 = ∑(𝐶𝑜𝑠𝑡𝑛/𝐸𝑎𝑛
𝑛)

𝑁

𝑛=1

 (2) 

where 𝐶𝑜𝑠𝑡  and 𝐸𝑎𝑛  are total cost and annual energy 

supplied. The total cost is the sum of the annual investment 

cost and operation and maintenance cost. 

The index of reliability 𝐼𝑅 for proposed model is: 

𝐼𝑅 = ∑(𝐶𝑒𝑛𝑠
𝑛/𝐶𝑝𝑢𝑟

𝑛

 
)

𝑁

𝑛=1

 (3) 

where 𝐶𝑒𝑛𝑠  and 𝐶𝑝𝑢𝑟  are the annual cost of energy not 

supplied and power purchased from the superior grid. 

A game theory solution method called Nash equilibrium 

is adopted to size the player's capacity including batteries PB, 

WTs PW and solar PVs PS. To achieve the optimum payoff 

values, the players participating in the game model are 

allowed to compete/collaborate among themselves, based on 

their cooperation, different coalitions can be formulated for 

the payoff values’ optimisation. For the modelled three player 

game structure, four coalitions could be formed. For example, 

collaboration between two players with the third one playing 

as a self-sufficient or independent player. There are three 

permutations of this. A number of recent research findings, 

such as [37-38] demonstrate that more efficient and profitable 

models can be developed with the help of cooperative games 

in comparison with non-cooperative games. Thus, this paper 

concentrates on the cooperative model with a purpose of 

exploring all four types of coalition. Each coalition focuses 

on sharing capacity allocation (kW size) and payoff value. 

IV. CASE STUDY AND RESULTS 

 In the simulation model, MATLAB is used for modelling 
the architecture and input parameters [37] for this study are 
shown in Table-1. Each asset is treated as a player who is 
opting for optimising its outcome or payoff. To do  
 

TABLE-I INPUT PARAMETERS  

Parameters Values 

(Units) 

Parameters Values 

(Units) 

Price of electricity 0.28 $/kWh Rated wind speed 12 m/s 

Feed-in-tariff 0.10 $/kWh Wind turbine price 770 $/kW 

P2P trading price 0.15 $/kWh Life of solar panels 20 Years 

Life of wind turbine 20 Years Solar panel price 1,890 $/kW 

Cut-in wind speed 3 m/s Life of battery 10 Years 

Cut-out wind speed 20 m/s Battery price 100 $/kW 

 

 

Fig.  3. Comparison among the four possible coalitions in a cooperative game 
where W, S and B are three parties in the game where {W}, {S,B} represents 

W is self-sufficient and, S and B are in single coalition, and {W,S,B} is a 

their joint coalition. 

 
optimisation for P2P trading-based LEM, the game model is 
built using a modified particle swarm optimisation (PSO) 
algorithm. PSO is essentially a computational technique to 
optimise different iteration problems  so that the desired 
outcomes are improved. This study sets the population size 
(selected) and maximum number of iterations as 100 and 250 
respectively in order to select the size of the defined players 
optimally while payoff values are also found out. 

 In Fig. 3, the payoff values of the IR for MG-1 with four 
different types of coalitions are compared with payoff values 
of annual profit demonstrated in [36]. IR is a minimising 
function for the cost of power loss; however, annual profit is 
a maximising function. If this analysis is compared with 
[36],  all four coalitions show some sort of similarity, but a 
single coalition {W, S, B} provides the optimum results.  The 
per-unit values of objective functions of both IR and annual 
profit are shown in Fig.  4, and results verify that IR and annual 
profit have their optimum minimum and maximum values in 
case of coalition {W, S, B}. The trend of their payoff values 
also shows that results are the worst for the coalition {W}, {S, 
B}. 

  In other words, the larger the gap is seen between IR (blue) 

and annual profit (purple), the better is the the payoff. Every 

player is controlling two variables in their renewable asset. 

The first variable is capacity allocation, P, that determines 

how the sizes of battery, wind turbine and solar panel should 

be. The second variable is an MoF that comprises LCOE 

($/kWh) and IR ($). This illustrates how much the cost of 

electricity and the cost of power loss. These two variables 

have placed every player or asset somewhere in a two-

dimensional space. This two-dimensional space is repeated 

for all three assets, giving a 6-dimensional (D) game space. 

The overall game consists of playing with the data given by 

the Australian meteorological data office for those townships. 

A guestimate point is found to start with, and computes a 

nearby point that produces more optimal results, and then 

feeds that result in and iterates the process again. This is 

repeated until some kind of stationary point, the Nash 

equilibrium, in the 6-D space is reached. 

 Fig. 4 depicts the simplest model with capacity allocations 
and payoff values of the proposed objective functions for the 
considered MMS. In this research, two objective functions 
LCOE and IR are minimised as a single MoF to attain their 
optimum values. The  payoff values of the proposed 
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Fig.  4. Capacity allocations of the players and payoff values as result of multi-
objective function. 
 

objective functions and capacity allocation of the players PW, 
PS and PB, where LCOE and IR are optimised simultaneously 
to attain  their optimum results. The outcomes of the MoF are 
converged after multiple iterations on the PSO algorithm and 
three iterations are shown in this diagram. The results 
illustrate that the payoff values of MoF, LCOE, and IR are 
minimum at the third iteration, and optimum sizes of the 
defined players for each MG. MG-2 contains  the largest 
residential load profile, resulting in greater value of  total 
players’ size that is 1,631 kW On the contrary, the smallest 
load profile is possessed by the MG-3, reducing its total 
players’ size to 1,399 kW. Further validation of the total 
players’ size is carried out as the trend is P*W> P*S> P*B [36]. 
This demonstrates the maximum and minimum contributions 
come from WTs and batteries respectively in the formulated 
MMS model.  

Figure 5 shows the per-unit payoff values of objective 

function including IR, LCOE and MoF for three different 

iterations. The trend is very clear that payoff values for each 

objective function are minimum in iteration 3. Since the costs 

at this point are minimum (the payoffs are maximum); 

therefore, the sizes of the players PW, PS and PB in iteration 3 

are an optimum. 

 Further, figure 6 reveals that when the values of IR 

(representative of cost of power loss) are compared in a P2P 

vs P2G scenario, P2P performs better. The results highlight 

that the 1.397 M$ cost of power loss in P2G decreases to 

almost 48 % if P2P trading is performed. That proves that 

modern P2P energy trading is a smarter way to reduce the 

cost of power loss. 

 
 

Fig. 5 The simplest model for studying payoff values for three iterations, MoF 
is the multi-objective function, LCOE is the levelized cost and IR is the power 
loss function. 

 

Fig. 6 Comparison of IR payoff values P2P vs P2G. 
 

V. CONCLUSION 

In this paper, a mechanism has been proposed and 

analysed to carry out P2P energy trading between three 

microgrids equipped with DERs, that include WTs; solar 

PVs; and battery storages. The determination of the accurate 

size of each DER and payoff values optimally has been 

considered as the proposed MoF, and it has been solved by 

the Nash equilibrium in a coalition game theoretic format. 

The IR and LCOE have been integrated with the proposed 

approach to guarantee lower energy costs during intermittent 

periods of DERs. Finally, an Australian case study, 

considering real world wind speed; solar irradiation; and 

residential load profiles, has been demonstrated to validate 

the proposed MoF and economic feasibility of each DER. 

The outcome of this study could allow us to have greater 

confidence when designing P2P-empowered energy systems 

and allocating budget in the coming days. A larger number of 

players with complex permutations could contribute to the 

present energy sector in transitioning to the energy grid of the 

future. 
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