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Abstract— Dynamic line rating (DLR) is considered a key 

concept in transmission lines that can guarantee the variable 

nature of renewable energy sources with minimal economic 

constraints. So far, various schemes have been selected for DLR 

forecasting that offers acceptable capacity but require 

measuring instruments and communication networks with 

precise calibration on the conductor surface, which in addition 

to high economic costs, are always available for cyber attackers. 

In this study, to forecast the DLR values, a deep learning-based 

technique called long short-term memory (LSTM) is proposed. 

Additionally, a novel data integrity attack detection approach 

based on image processing is developed to maintain the 

performance of the forecasting model against cyber-attacks. 

The LSTM forecasts the DLR values of an overhead 

transmission line located in Tabriz, Iran, using meteorological 

parameters as input data. The forecasting results confirm the 

high performance of the LSTM model with minimal error 

values. Then, a scaling attack is applied as a known data 

integrity attack on the input variables of wind speed and wind 

direction to evaluate the performance of the LSTM network 

against cyber-attacks. The results of this scenario show that a 

cyber-attack can significantly reduce the accuracy of the 

forecasting. To prevent this, the image processing-based 

technique detects and clearly displays the cyber-attacks in each 

of the input variables by converting the input data parameters 

to 2-D images. 

Keywords—Dynamic line rating, forecasting, long short-term 

memory, image processing, data integrity attack 

I. INTRODUCTION 

The modern power system has significantly witnessed the 
synergy of renewable energy sources (RES) with transmission 
and distribution systems. Given recent studies, it reaches 60% 
of total power generation worldwide by 2050 [1], [2]. Easy 
access and use of these resources require basic infrastructure 
in line with the transmission of generated energy by RES with 
minimal restrictions [3]. 

Dynamic line rating (DLR) is a key concept in 
transmission lines that ensures the variable nature of RES 
without high investment costs and minimal constraints. The 
DLR has various application aspects, which are discussed in 

[4], [5] of its technologies for integrating wind turbines in 
power systems. In the conventional structure, overhead 
transmission lines operate in a range less than the 
predetermined rate, i.e., static line rate (SLR) [6], [7]. 
However, the thermal capacity of overhead transmission lines, 
according to IEEE 738 and CIGRE standards, is highly 
affected by environmental and climatic conditions such as 
wind speed, wind direction, global radiation, temperature, and 
so on. Therefore, due to the dependence of overhead line 
capacity on environmental conditions, DLR is able to forecast 
the thermal capacity of overhead transmission lines in real-
time [6]. Online monitoring and real-time forecasting of 
overhead line’s capacity significantly contribute to the 
integration of RES, especially wind turbines, with the power 
system with higher reliability and stability, yet at a lower cost. 
Due to the fact that the DLR mainly depends on environmental 
and weather conditions, the amount of DLR related to each 
transmission line can be forecasted based on the available 
weather conditions and using observed data in meteorological 
stations available in the region [7], [8]. 

So far, various studies have proposed different techniques 
for DLR forecasting. In [9], the DLR forecasting has been 
performed based on the ampacity probabilistic forecasting. 
This study forecasts the DLR values by avoiding the network 
operators’ risk in high-risk situations. The DLR forecasting in 
[10] has been done using a variety of regression models, 
including multivariate polynomial regression, an hourly 
normalization, and an autoregressive integrated moving 
average. Estimation of DLR values for transmission lines has 
been performed using meteorological data combined with 
computational fluid dynamics of wind simulation in [11]. 
DLR forecasting considering the cyber-security of input data 
has been done in [5] by developing a hybrid scheme based on 
deep learning applications. In [12], machine learning 
techniques have been suggested for 27 hours ahead of DLR 
forecasting related to two transmission lines studied in 
Northern Ireland. In [13], the application of DLR expansion 
technology in non-thermally limited long lines has been 
evaluated by considering the correlation between effective 
variables such as temperature, conductor resistance and 
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voltage drop in the overhead transmission lines. The results of 
that study show an increase of 17% and 12% for 69 kV and 
138 kV lines, respectively, without the need to upgrade the 
substation equipment. In [14], four various machine learning 
procedures forecast the day-ahead DLR by considering 
meteorological data as input variables. A novel model based 
on dynamic stochastic general equilibrium has been 
developed in [15] to forecast DLR. The proposed model is 
based on stochastic volatility and is utilized for real-time 
forecasting. In [16], DLR forecasting in real-time has been 
done using 110 kV transmission line data and techniques 
based on a live simulation model and a systematic deviation 
correction approach based on the Tabu search algorithm. 
Quantitative regression and super-density regression methods 
have been proposed in [17] for very short-term risk-averse 
stochastic DLR forecasting. In [18], modeling uncertainties 
related to meteorological variables and presenting an accurate 
trend of DLR forecasting related to overhead transmission 
lines have been performed via the fuzzy theory. Stability 
evaluation of transmission lines equipped with a DLR 
technology has been developed in [19] based on a Markov 
model. In [20], decision tree-based learning models such as 
AdaBoost, Gradient Boosting (GBoosting), XGBoost, 
CatBoost, and Light Gradient Boosted Machine have been 
applied to forecast the DLR values associated with two 
overhead transmission lines in Iran. 

A review of the literature shows the background of the 
DLR forecasting process, so it can be seen that various 
techniques have been devoted to forecasting DLR with 
different accuracies and applications. However, each of the 
utilized methods suffers from problems that reduce the 
accuracy of the forecasted results. As mentioned in the 
literature, the DLR values have a high correlation with 
meteorological variables. Time-series model is also one of the 
most important features of meteorological data used in DLR 
forecasting that has not been modeled in any of the solutions 
employed in the reviewed studies. In addition, modern 
power/energy systems have a significantly high volume of 
data, and cyber-security and the prevention of cyber-attacks 
are among the most important issues that must be considered 
today in a diversity of applications associated with power 
systems. However, this problem has not been addressed in any 
of the reviewed studies and the performance of the suggested 
technique against cyber-attacks has not been evaluated. 

The rest of this paper is organized as follows: Section II 
introduces the developed methodologies. Cyber-attack 
modeling is represented in Section III. The results of DLR 
forecasting and data integrity attack detection are presented in 
different scenarios in Section IV. Section V presents the 
conclusion of the paper. 

II. METHODOLOGIES 
In this paper, the prediction of DLR values in transmission 

lines is done based on one of the well-known and robust deep 
learning applications named LSTM. Then, during a separate 
scenario, the cyber-attack injects into the input parameters to 
evaluate the performance of the LSTM network against false 
data. Finally, the data visualization procedure is proposed to 
diagnosis cyber-attacks in each of the input variables. In the 
continuation of this section, each of the LSTM and data 
visualization techniques is introduced in detail. 

A. Long short-term memory (LSTM) 
LSTM is a useful recurrent neural network (RNN) 

structure of deep learning applications that was first suggested 

in 1997 [21]. This algorithm was able to dramatically 
compensate for RNN limitations such as the vanishing 
gradients issues via allowing gradients to pass unaltered. In 
addition, time-series modeling, forecasting, categorization, 
and modeling of linear and nonlinear relationships are other 
applications of the LSTM [22]. Typically, most conventional 
machine learning and deep learning procedures are not able to 
model and extract features from time-series data during the 
training stage. While, the LSTM can retain information about 
previous states and receive acceptable training in the face of 
high-dimensional data that requires prior state knowledge. 
Each LSTM unit consists of four main variables called internal 

memory, forget gate (𝑓𝑡), input gate (𝑖𝑡), and output gate (𝑜𝑡). 
The first gate in this architecture is the forget gate, which 

determines the amount of data kept from the latest 𝑐𝑡−1 
status. The mathematical formulations of the LSTM 
architecture is described as follows [23], [24]: 

𝑓𝑡 = 𝜎(𝑊𝑙𝑓𝑙𝑡 + 𝑊𝑚𝑓𝑚𝑡−1 + 𝑏𝑓) (1) 

𝑖𝑡 = 𝜎(𝑊𝑙𝑖𝑙𝑡 + 𝑊𝑚𝑖𝑚𝑡−1 + 𝑏𝑖) (2) 

𝑜𝑡 = 𝜎(𝑊𝑙𝑜𝑙𝑡 + 𝑊𝑚𝑜𝑚𝑡−1 + 𝑏𝑜) (3) 

𝑎𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑙𝑎𝑙𝑡 + 𝑊𝑚𝑎𝑚𝑡−1 + 𝑏𝑎) (4) 

𝑐𝑡 = 𝑐𝑡−1ɸ𝑓𝑡 + 𝑖𝑡ɸ𝑎𝑡 (5) 

𝑚𝑡 = 𝑜𝑡ɸtanh𝑐𝑡 (6) 

where σ demonstrates the logistic sigmoid function, 𝑐𝑡 and 𝑎𝑡 
denote the memory cell and the hidden vector, respectively. 

𝑊𝑙∗ = {𝑊𝑙𝑓, 𝑊𝑙𝑖 , 𝑊𝑙𝑎, 𝑊𝑙𝑜}  and 𝑊𝑚∗ =

{𝑊𝑚𝑓, 𝑊𝑚𝑖 , 𝑊𝑚𝑎, 𝑊𝑚𝑜}  represent the trainable weights 

corresponding to the respective gates. 𝑏𝑓, 𝑏𝑖 , 𝑏𝑜, and 𝑏𝑎 shows 

the output biases. Operator ɸ shows the Hadamard product. 
Table I shows the parameters set for the LSTM model in this 
paper. 

B. Data visualization 

Data visualization is based on visual information and uses 
it to present a fast and efficient method of sharing information 
globally. The aim of data visualization is to simplify data so 
that the human brain can easily understand and reason it. 
However, to achieve this goal, it needs to be transformed into 
a visual context, like an image. So, when the data becomes 
manageable, patterns, trends, and even unusual values can be 
easily spotted in the massive data. As mentioned earlier, this 
is the most important goal of data simplification. Sensitivity 
to visual processing is higher in the human brain than in any 

TABLE I.  THE LSTM MODEL PARAMETERS 

Layer (type) Output Shape 

Directional 22 

Dropout_1 (Dropout) 0.3 

Flatten_1 (Flatten) 22 

Dense_1 (Dense) 14 

Output (Dense) 16 
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other sense, and in the act of understanding, visual processing 
is considered to have "broadband" availability. In practice, 
what is obtained with these tools must be easily understood by 
all people, and only in this way are these computational tools 
useful. In the real world, however, we have a wide range of 
massive data, and this goal is rarely achieved. Representative 
methods are not able to establish a basic and effective 
correlation of the qualitative information contained in these 
data. Therefore, the visualization approach could play an 
important role in data analysis in various applications. 

Modern power systems generate a huge amount of 
information and require power system engineers and operators 
to analyze this information in detail. In power systems with 
thousands of buses, the main challenge is to present the 
generated data in such a way that operators can intuitively and 
quickly assess the state of the system. This is especially true 
when analyzing the relationships between power flows on the 
grid and the capacity of the transmission system. This need 
becomes even more acute when a single entity, such as an 
independent operator, operates a much larger system. To 
generate a lot of information, there are various computing 
processors in power systems that utilize different complex 
algorithms consisting of considerable data in the case of 
control to operate. In control centers, the data is extracted from 
the devices used in a power system. Then the analysis process 
of these outputs is done by the operators. After this analysis, 
the relevant results are obtained and on the basis of these 
results, appropriate actions are taken while the time is limited. 

A visualization approach, such as physically grasping 
these internal representations, is very likely to make 
significant progress in understanding. So far, few studies in 
the field of power and energy systems have applied the data 
visualization approach [25], [26]. However, this must be 
achieved in different applications. To this end, the authors 
recently introduced a novel visualization approach that easily 
detects the location of short circuit faults in power transformer 
windings [27]. The results presented in this study emphasize 
the effectiveness of the data visualization approach. In the 
present work, we have implemented this procedure in 
detecting cyber-attacks on DLR parameters. In the following, 
this visualization technique is explained in detail. 

III. CYBER-ATTACK MODELING 

Data integrity attack is based on the destruction of 
measured values and mainly targets the measured data in the 
system in order to make the performance of the system 
difficult by changing the relevant parameters. This type of 
attack can easily be implemented in all parts of the power and 
energy systems that have sensors and measuring equipment 
[5]. In this paper, a false data injection attack is modeled and 
applied as a known example of a data integrity attack on 
meteorological data, which are the input variables of DLR 
measurements. 

Scaling attack is one of the most common forms of false 
data injection attack modeling that has been applied to wind 
speed and wind direction parameters in this paper. Decreasing 
and increasing the actual measurements of the data during the 
attack based on the tuned scaling parameters, is the basis of 
this type of attack [28]. In this study, modeling the scaling 
attack is performed by decreasing and increasing the wind 
speed and wind direction values by 5%, so that the average 
data is maintained. The mathematical modeling of a scaling 
attack is as follows [29]: 

𝒬̅𝑡 = (1 + 𝜆𝑆) × 𝒬𝑡    𝑓𝑜𝑟 𝑡𝑠 < 𝑡 < 𝑡𝑒 (7) 

where 𝒬𝑡  is the main dataset, 𝒬̅𝑡  shows the manipulated 
dataset under the scaling attack, 𝜆𝑆  denote the attack 
parameters, 𝑡𝑠  represent the start time of the scaling attack, 
and finally, 𝑡𝑒 indicates the end time of the attack. 

IV. DLR FORECASTING AND DATA INTEGRITY ATTACK 

DETECTION RESULTS 

In this study, the results are presented in two different 
scenarios including DLR forecasting and data integrity attack 
detection. Each of these scenarios is described as follows: 

A. First scenario: DLR forecasting 

In this study, forecasting of DLR is done by employing the 
well-known LSTM technique. The overhead transmission line 
located in Tabriz, Iran has been selected as the case study [5]. 
Thus, the meteorological data associated with this region, 
which are observed by the meteorological station, are 
considered as the input dataset. The transmission line 
understudy has specifications such as 8 spans, length of 40.50 
km, a diameter of 31.5 mm, and maximum heat capacity of 75 
° C. The meteorological data used also include wind speed, 
wind direction, temperature, humidity, and solar radiation at 
40 m altitude for the years of 02/11/2011 to 01/07/2012 with 
a sampling resolution of 10 minutes. The LSTM network 
training is performed by 75% of the desired data and network 
testing is performed by the remaining 25% of the data. After 
completion the training and test process, the network 
performance for each stage is analyzed by different 
performance evaluation indicators such as correlation 
coefficient (𝑅2), mean square error (MSE), root mean square 
error (RMSE), and mean absolute percentage error (MAPE). 
Each of these indicators analyses the results in a specific way. 
Thus, the maximum values of 𝑅2 and the minimum values of 
error indices express the best state of the forecasting model. 
The mathematical calculation for each of these metrics is 
denoted in [22]. 

The designed network is trained using the provided data 
and in this process, the training results of the LSTM network 
are presented in Table II. The results show that the network 
was able to model the behavioral pattern of the input data in 
an acceptable way to forecast the corresponding DLR values. 
After evaluating the results of the training process and saved 
the designed network, the test data is considered as network 
input to perform the test phase. This process is based on the 
patterns identified from the input data so that the saved 
network can forecast the DLR values of the test input data. 
Fig. 1 provides a general comparison of the actual DLR values 
and forecasted DLR values by the LSTM in the test phase. The 
results presented in Fig. 1 clearly show that the LSTM can to 
forecast the DLR values with less difference than the actual 
values. The correlation between the actual and forecasted 
DLR values is seen in this figure. In addition, since the input 
parameters did not have any preprocessing technique, so can 
emphasize the high performance of the LSTM in forecasting 
DLR values. Introduced performance evaluation indicators 
can be used to more accurately evaluate the forecasting 
results. Table III examines the results of the LSTM test phase 
based on performance evaluation indicators. 

 
TABLE II.  EVALUATING THE LSTM NETWORK RESULTS IN THE 

TRAINING PHASE 

𝑹𝟐 (%) MSE RMSE MAPE 

99.39 4.6841 2.1643 8.2578 
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Fig. 1. Comparison of actual DLR values and forecasted DLR values at the LSTM test stage 

TABLE III.  EVALUATING THE LSTM NETWORK RESULTS IN THE TEST 

PHASE 

𝑹𝟐 (%) MSE RMSE MAPE 

99.11 187.21 13.68 24.19 

The results presented in Table III also show that the network 
can forecast the DLR parameters with acceptable accuracy. 
Each of the evaluation metrics is computed based on the 
relationship between the real measurements and the forecasted 
DLR parameters and evaluates the performance of forecasting 
model. However, knowing the minimum and maximum error 
intervals in the forecast parameters can provide a better 
overview of the forecast process and the performance of the 
network in the test phase. Fig. 2 provides the error histogram 
for the LSTM network in the test phase. The results presented 
in this figure show that the minimum and maximum error 
prediction intervals of the LSTM network are in the worst case 
between -62 and 78. Excluding the difference between the 
actual and forecasted DLR values from this error interval, 
indicates disturbances and a decrease in the correlation 
between the input variables. As such, this condition mainly 
occurs in cyber-attacks such as false data injection attack. 
Accordingly, to evaluate the performance of the proposed 
model against cyber-attacks, it is necessary to use false data to 
test the LSTM network. The next scenario addresses this issue 
by applying a scaling attack on the input variables and 
proposes a data integrity attack detection approach based on 
image processing. 

B. Second scenario: Image processing-based data integrity 

attack detection 

In this scenario, the scaling attack, as described in Section 
3, is applied separately to the input variables (test data) of 
wind speed and wind direction. Then, the DLR forecasting is 
performed using false data as LSTM input variables. Table IV 
presents the results of DLR forecasts using false data. The  

 
Fig. 2. Distribution of the LSTM network errors in the test process in the 

form of error histogram 

TABLE IV.  PERFORMANCE EVALUATION OF THE LSTM NETWORK IN 

DLR FORECASTING BY FALSE DATA 

Attack description 𝑹𝟐 (%) MSE RMSE MAPE 

Decrease 5 % wind speed 96.61 347 18.62 41.24 

Increase 5 % wind speed 96.23 298 17.26 37.41 

Decrease 5 % wind direction 21.52 8362 91.44 100.2 

Increase 5 % wind direction 94.74 675 25.98 79.62 

results presented in Table IV show that the implemented 
cyber-attack on the input data was able to break the correlation 
between the input variables. Thus, at this stage of forecasting, 
the accuracy of the model compared to the clean state of the 
data has been greatly reduced and the error values of 
forecasting have been increased. Like the first scenario, Fig. 3 
shows the distribution of the forecasting error associated with 
this scenario in the form of an error histogram. 

As shown in Fig. 3, at this point, the forecasted DLR error 
values are out of the range specified in the original model test 
process. This trend indicates that input variables are involved 
in the problems that reduce the correlation between them. In 
this paper, this correlation was damaged by a data integrity 
attack. As mentioned in the literature, the main purpose of this 
scenario was to provide a data integrity attack detection 
approach based on image processing. Thus, the proposed 
technique accurately identifies the cyber-attack applied to the 
input variable and clearly displays the changes resulting from 
the attack compared to the clean state of the input variables. 
The basis of the proposed image processing technique is the 
conversion of input parameters into 2-D images. So, in the 
first step, the parameters related to the clean state are 
converted from the variables of wind speed and wind direction 
to 2-D images. Then, 2-D images corresponding to the 
attacked parameters are generated. Finally, the discrepancy 
between the healthy and false state images clearly indicates an 
attack on the input data. Fig. 4 shows 2-D images of clean 
states related to the test data of wind speed and wind direction. 

 
Fig. 3. Distribution of the LSTM network errors in the test process by false 

data in the form of error histogram 
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(a) (b) 

Fig. 4. 2-D images of test data in the clean state; (a) wind speed, (b) wind 

direction 

 As can be seen in Fig. 4, the parameters related to each of 
the variables of wind speed and wind direction have been 
converted into 2-D color images, and the color variation in 
these shapes is due to the variation in the data parameters. 
Images of false test data are now generated to clearly see the 
difference in parameters caused by the cyber-attack. Fig. 5 
shows the cyber-attacks detected in the test data. The results 
presented in Fig. 5, show that the proposed image processing 
technique was able to detect and clearly display the designed 
cyber-attack by plotting the difference between the parameters 
of the healthy state and the false state related to the input data. 
In each of the figures related to the variables of wind speed 
and wind direction, changes due to cyber-attack on the 
parameters are clearly observed. 

 
(a) 

 
(b) 

Fig. 5. Detection of cyber-scaling attack in parameters related to test data; 

(a) wind speed, (b) wind direction 

V. CONCLUSION 

Ensuring the nature of the RES variable with minimal 
economic constraints has clarified the concept of DLR and 
increased its forecasting importance. However, cyber-attacks 
can be considered a major threat to the security of the data 
used and the results of the forecasting. In this paper, in order 
to forecast the DLR values in overhead transmission lines, a 
deep learning-based DLR forecasting procedure named 
LSTM and a cyber-attack detection scheme based on image 
processing were developed. The LSTM technique was trained 
using climatic variables observed by meteorological stations 
installed in the city of Tabriz in Iran to forecast the DLR 
parameters of an overhead transmission line in this region. 
The results of the predictions related to the training and test 
processes of the LSTM network were analyzed using different 
performance evaluation indices, and the presented results 
emphasized the high capability of the developed LSTM 
technique. However, the performance of the forecasting 
model against cyber-attacks was analyzed. To do this, the 
scaling cyber-attack was applied as a data integrity attack to 
the input variables of wind speed and wind direction. Then, 
false data were used as input to the forecasting model. The 
forecasting results had low accuracy and high error, which 
showed a lower correlation between input variables. Due to 
the high volume of data and maintaining the average 
parameters in the modeled cyber-attack, detecting the 
designed attack required an intelligent technique. The 
proposed image processing technique, with a high ability to 
convert numerical parameters to 2-D images with high color 
resolution, was able to display any changes in parameters with 
certain color schemes and was therefore used to detect data 
integrity attack in this paper. In the first step of the detection 
process, the parameters related to the clean state of the input 
data were converted to 2-D images. It then detects the cyber-
attack applied to each input variable by forming 2-D images 
of the false data and finding the difference between them and 
the clean data. Finally, the presented results were emphasized 
the high performance of the developed image processing 
method in data integrity attack detection. 
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