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Abstract—We have proposed in this article a recent 

intuitive approach which concerns a Direct Matrix Converter 

(DMC), intended for the optimal power control of a Wind 

Energy Conversion System (WECS) with a Permanent 

Magnets Synchronous Generator (PMSG). The future 

switching state of the DMC is performed by a simple-cost 

optimization algorithm for a discrete system model without the 

need for additional modulation block or cascaded control 

loops. The control objectives are regulation of the mechanical 

torque and flux of the PMSG according to an arbitrary 

references established based on the maximum power point 

tracker (MPPT), in addition a proper tracking of the output 

reactive power to its reference ensuring unitary power factor. 

Simulation was used to study and test the whole control system. 

The results obtained are very satisfactory, ensuring better 
control of the WECS thanks to the use of the DMC structure. 

Keywords—Intuitive approach, PMSG, wind, direct matrix 

converter (DMC), simulation results 

I. INTRODUCTION 

The permanent magnet synchronous generator (PMSG), 
which is characterized by its robustness and ease of 
maintenance, has several benefits in variable speed 
operation as well as medium and high power                 
applications [1]. The power electronics interface, which 
typically consists of a two-stage AC-DC-AC converter 
system, is coupled between the wind generator and the 
power grid to be applied only at a restricted speed range and 
rated at a fraction of the machine’s nominal power [2]. 

 In recent years, the use of direct AC-AC frequency 
power converters, such as DMC and indirect matrix 
converter (IMC), has gained wide acceptance. In the AC 
drives, these structures ensure sinusoidal currents for AC-
AC conversion [3]. The matrix converter (MC) in turn 
ensures the advantages of low distortion of input and output 
currents with adjustable amplitude and frequency; a 
bidirectional power flow and unity power factor when 
operating in motor and regenerative modes. Among the 
favorable characteristics of the MC is the bulky absence of 
the DC-link energy storage component thus allowing the 
ability to operate under adverse atmospheric conditions. 
These peculiarities make the MC an appropriate solution for 

high efficiency converters, which have invaded different 
important fields, including military, variable speed operation 
of wind energy systems, aerospace, compact motor drives 
and skin pass mill. However, the main disadvantage of this 
solution is the difficulty of control. 

Newly published research papers have discussed the control 
of PMSG-based wind power generation systems [4-6]. 
These researches have focused on the development of 
control techniques in order to bring about substantial 
improvements in the production system [7, 8]. In the 
literature, only a few articles have discussed the introduction 
of MCs in the wind generation systems [9].  

From the new control strategies for power converters 
developed in the last years, the use of Model Predictive 
Control (MPC) is a very interesting alternative due to its 
intuitive concept, simple principle, good dynamic behavior 
and flexibility [10-13]. The MPC allows to control several 
different variables of a system taking into account 
constraints and nonlinearities [14, 15].  

The objective sought for this article consists in the study 
of the advantages of the predictive algorithm and the DMC 
simultaneously. The expected result of this research work is 
characterized by a simple, intuitive and new control of the 
electromagnetic torque and the stator flux of the PMSG. On 
the other hand, a substantial improvement in the control 
scheme is ensured by the introduction of a reactive power 
minimization strategy which will in turn guarantee a power 
factor close to unity on the grid side of the MC converter. 
The results obtained by MATLAB/Simulink package 
program confirm the effectiveness of the proposed control 
approach.  

The presented work is structured as follows: section II 
presents the overall system description; section III describes 
the mathematical model of the PMSG; section IV exhibits 
the direct matrix converter; sections V and VI depict 
respectively the proposed advanced control strategy and the 
obtained simulation results. Finally, conclusions are given in 
section VII. 
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II. DESCRIPTION OF THE STUDIED SYSTEM 

A three phase direct matrix converter, used as an 
interface between the PMSG and utility grid via an output 
power filter, is shown in Fig. 1. The input side of the DMC 
is controlled effectively for variable speed operation of the 
PMSG to enable the maximum power extraction from the 
available wind. The output side of the DMC controls the 
reactive power exchange between the wind generator and 
the power grid. 

 

 

 

 

 

 

 

 

 

Fig. 1.Schematic representation of the wind PMSG with DMC. 

III. PMSG MODELING 

For surface mounted PMSG modeling, a fifth order 
dynamic model is used in this paper [16, 17]. The generator 
equations in a stationary reference frame can be described 
by using complex vectors as follows [18]: 
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Where Vs is the stator voltage (V), is is the stator current (A), 
Rs is the generator resistance (Ω), ψsis the stator vector flux 
(Wb), ψris the rotor  flux vector (Wb), the inductances of d-q 
axes are equal (Lq=Ld=Ls), ωeis the electrical speed (rad/s), 
θeis he electrical position (dθe/dt=ωe ), ψf is the magnet flux 
(Wb), p is the pair of poles, F is the rotational friction (kg 
m2/s), J is the total rotational inertia of the system (kg m2), 
and Tm is the mechanical torque produced by the turbine 
(Nm).  

IV. DYNAMIC MODEL OF THE DMC 

The single-stage AC-AC direct matrix power converter 
is composed of nine insulated-gate bipolar transistors 
(IGBT), whose control is bidirectional. This kind of 
converter connects directly the power source to the load 
where its operation is based on twenty seven switching 
states [19]. This number of switching states delivered 
according to the restriction of the DMC structure under the 

following conditions: non-shortening of the input terminals 
and requirement of non-opening of the output phase. Table I 
includes the different allowable switching states of the DMC 
3×3 which are classified into three groups based on the 
input current vector and the output voltage type [20]. 

TABLE I.  PERMITTED SWITCHING STATES OF DMC 

Group 

states 

Phase Output voltage 
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The DMC includes an Rf Lf Cf power filter on the output 
side, useful for overcoming high voltages and decreasing 
harmonic distortion caused by switching and the inductive 
nature of the AC network. It is considered as a 2nd order 
system as given by these mathematical relations: 
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Where Lf is the inductance, Rf the damping resistor and Cf       

the capacitor of the output power filter.  
Based on the equations presented above, the output can 

be given by a state space form with the internal variables ii 
and Vi: 
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Where  A and B are matrices of appropriate dimensions. 
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V. PREDICTIVE CONTROL STRATEGY 

The suggested Predictive Direct Torque Control (PDTC) 
scheme for the direct drive PMSG is illustrated by Figure. 2. 
The approach aims of selecting one of the twenty seven 
existing switch states of the DMC that brings the rotor 
torque Te and the stator flux ψs closest to their imposed 
values at fixed sampling time period while minimizing the 
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reactive power Qo on the output side of the DMC. Figure 3 
represents the flowchart of the designed PDTC in this paper. 
For this research work, the external PI type regulator 
generates the torque setpoint Tref and control the PMSG 
speed. This same torque reference will be deployed to 
provide the trigger patterns to extract the maximum 
mechanical power from the wind turbine. On the other hand, 
the role of the PI regulator is to achieve zero stable state 
error thanks to its integral part [21]. Thereby, the fast 
dynamics of the PDTC approach can be seen simply as a 
unit gain between the reference and the controlled              
variables. 

A. Flux Estimation 

Non-measurable variables are calculated by an 
estimation block, such as the stator flux ψs and the rotor flux 
ψr. In PDTC, estimations of the stator flux ψs and the rotor 
flux ψr are indispensable for the present sampling phase t(k). 
The stator flux estimation can be calculated using the stator 
voltage equation of the PMSG presented in (1). Thanks to 
the forward difference Euler formula to discretize (1), the 
stator flux calculation can be calculated as below: 

( ) ( 1) ( ) ( )s s s s s sk k TV k R i k          (10) 

Where Ts is the sampling period. 

Based on the equivalent equation of the PMSG stator 
dynamics which is given in the form of standard state space, 
one can easily calculate the rotor flux as follows:  
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Discretizing (11), and replacing the derivatives by the 
Euler based backwards approximation, the rotor flux 
calculation ψr(k) is given:  

 
1

( ) ( ) ( 1) ( ) ( )r s s s s s

s s

k i k i k V k R i k
L T

       (12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Developed intuitive DTC for the wind PMSG. 

B. Predictive Torque and Flux Variables 

Once the estimates of the rotor and stator fluxes are 
established, the calculation of the predictions of these 
variables is necessary. In the case of PDTC, the stator flux 
ψs(k) and the electromagnetic torque Te(k) are predicted for 
the t(k+1). The stator flux and the electromagnetic torque 
prediction variables can be calculated according (13) and 
(14).  
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As observed in (13) and (14), the prediction of these 
quantities is subordinate to the prediction of the stator 
current is(k+1).  

For this reason, the predicted relation of the stator 
current is(k+1) is determined thanks to the equivalent 
equation of the stator dynamics of the PMSG presented in 
(1): 
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C. Instantaneous Reactive Power Prediction 

A discrete time state space representation of the output 
side for a sampling time Ts can be employed to predict the 
internal behavior of the output current considering the 
capacitor voltages and output current measurements at the 
kth sampling time. The discrete time equivalent system of 
(8), when the input is generated by a zero order hold and all 
matrices are constant is given by: 
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Thus, the output current and capacitor voltage can be 
expressed by (19) and (20). 
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The prediction of output instantaneous reactive power is 
established through the future state of the output current and 
grid voltage as presented in (21): 
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Where the subscripts α and β are the real and imaginary 
components of the associated vector. We identify grid 
voltages as low frequency signals while assuming that: 
Vs(k+1) ≈ Vs(k). 

D. Cost Functions Calculation 

In order to decide on the best switching state to apply, 
the quality function is authorized to offer the evaluation 
criteria.  

The cost function gi (k+1) is identified by the 
combination in a single term of the predicted torque with its 
nominal value and of the predicted flux corresponding to the 
reference flux. 
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Where λψ denotes a weight factor of the cost function. The 
adjustment of this factor whose role serves to increase or 
decrease the importance of the flux control compared to the 
torque control. 

Among the essential advantages offered by the DMC, 
we will cite the possibility of controlling the displacement 
factor on the mains side with minimization of the output 
reactive power. At the same time multiple objectives can be 
achieved by adding more functions in the global cost 
function gi (k+1).  

By adding a third term to the cost function of (22), we 
can easily have the resulting cost function of (23) including 
both objectives: 
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The weighting factor λq handles the relevance of this term to 
the other terms in the cost function. At every sampling 
interval, and for all 27 valid switching states of the DMC, 
the cost function is evaluated, and the commutation state 
that produces the smallest value of fi(k+1) is selected to 
actuate the DMC in the next sampling period. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Flowchart of the considered predictive control law. 

 

VI. RESULTS AND DISCUSSION 

For the evaluation of the effectiveness of the proposed 
models and PDTC algorithms of the power source 
connected WECS, extensive simulations are performed in 
MATLAB/Simulink® package program using SimPower 
Systems Library. The simulation processed and adopted a 
wind speed sequence as shown in Fig. 4. This variation of 
the wind is intended to give an evaluation of the response of 
the studied wind system in situations below and above the 
nominal wind speed. 

Fig. 4. Wind speed evolution. 
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According to the obtained results, the simulated control 
system successfully tracked the maximum available power 
of the wind turbine along the wind speed profile. Through 
Fig.5, it is noticed that the power coefficient is near to its 
appropriate value (Cp

max= 0.48). 

Fig. 5. Coefficient  of the power. 

 

The extracted mechanical power is also shown in Fig. 6. 
Notice that the mechanical power and the wind speed are 
correlated. Fig. 7 presents the stator flux ψs, it is obvious 
that the stator flux reaches its desired reference ψref   in good 
conditions, even when there are changes in the wind speed.
  

 

Fig. 6. Wind turbine power. 

Fig. 7. Stator flux.  

 

Fig. 8 depicts the simulation waveform of the d-q axis stator 
currents of the PMSG. We observe through this figure that 
the stator current for the d axis is zero while it is 
proportional to the extracted mechanical power for the q 
axis. Fig. 9 shows the instantaneous three phase stator 
currents of the PMSG. As seen from the figure the three 
phase stator currents waveforms are nearly sinusoidal with a 
low total harmonic distortion (THDi). A zoomed view of 
Fig. 9 is also given in Fig. 10.  

Figs. 11 and 12 show the three-phase output voltage and 
current waveforms at the utility grid side respectively before 
filtering. As it’s clearly shown, the output voltages and 
currents wave shapes is non-sinusoidal and it contains 
harmonics. 

Fig. 8. d-q axis currents. 

Fig. 9. Stator currents. 

Fig. 10. Zoomed view of the stator currents. 

Fig. 11. Output phase voltage of the matrix converter. 

Fig. 12. Filter input currents. 

Fig. 13 and Fig. 14 show the results without and with output 
factor correction respectively. Good grid-side behavior is 
recorded for these two cases but still show significant 
differences. With the implementation of the strategy with 
λq=0, the grid current is characterized by high distortion and 
phase shift with its phase voltage. Deploying the added term 
for output factor mastery while considering λq>0, we notice 
that the current is very near to the sinusoidal shape as shown 
in Fig. 14. 
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Fig. 13. Source voltage and current with λq=0.  

Fig. 14. Source voltage and current with λq>0.  

The proposed study clearly shows that the intuitive 
approach for wind power generation systems has multiple 
advantages compared to the traditional wind system. The 
use of the DMC and PMSG allow to decrease the power 
stress and optimize the size of both the power converters 
and WECS. 

VII. CONCLUSION 

A wind energy conversion scheme containing a direct 
AC-AC matrix converter and model predictive control is 
presented in this paper. The torque and the flux of the 
PMSG is effectively controlled by the DMC to ensure a dual 
role of extracting the maximum power from the wind 
turbine under various wind speed situations as well as unity 
displacement power factor at the interface with the network. 
This task is important for a purely active power injection 
into the grid and an optimal utilization of the installed wind 
capacity. Due to the scheme of examination of the cost 
function by applying feasible switching state the proposed 
controller is superior to the commonly used PI regulator in 
that it does not require any supplementary modulation 
approaches or internal cascade control loops. Finally, the 
studied wind system with PMSG and matrix converter is 
successfully verified under MATLAB/Simulink 
environment. Via the obtained results, the suggested model 
and advanced control law can suitably follow the rotor 
speed reference to capture the maximum wind power 
whatever the wind speeds with minimization of the 
instantaneous reactive power at the interface with the power 
grid. 
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