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Abstract — Distributed photovoltaic (PV) systems are can 
provide a multitude of advantages to both utilities and 
consumers facilitated through the smart grid framework. 
However, due to the very nature of its variability and weather 
dependencies, the large-scale integration of this type of 
distributed generation has created challenges for the network 
operator in terms of reverse power flow and voltage rise in 
distribution feeders. One of the technologies to overcome these 
issues is to use reactive power compensators to keep the voltage 
profile within the limits set by the standards. Distribution static 
synchronous compensator (D-STATCOM) based matrix 
converter (MC) is proposed for use in low voltage distribution 
network to provide the required voltage support. This 
technology is reliable and has a long service life as it employs 
inductive energy storage instead of the capacitive elements 
which will improve the system reliability, controlled by finite-set 
model predictive control. Experimental results are provided to 
show the effectiveness of the proposed technology.   

Keywords— D-STATCOM, Voltage profile, Reactive power 
compensation, Model predictive control, Matrix converter.  

I. INTRODUCTION  
Voltage regulation is a critical factor in improving the 

reliability and security of any electrical power system. In 
conventional power system configuration, the power flows 
from generation through transmission and distribution 
network to the end-user. Custumers connected at the end of 
the low voltage distribution network will experience poor 
voltage regulation due to voltage drop in distribution cables. 
With the increased penetration of the non-dispatchable 

distributed PV energy resources in the low voltage network 
more active power will be fed back to the grid, and this reverse 
power flow in the feeder will cause number of power quality 
issues, and one of these issues is the voltage rise in the feeder 
[1, 2].  

Traditionally, various control devices have been used to 
regulate the voltage in the distribution network including on-
load tap changer (OLTC), capacitor banks, and D-
STATCOMs [3-5]. A D-STATCOM is a fast response power 
electronics device that can provide flexible voltage regulation, 
power factor correction, and harmonics mitigation in the 
distribution network. However, the available D-STATCOM in 
the market is based on voltage source converter (VSC) with 
electrolytic capacitors. These capacitors are subjected to 
accelerated failures especially in hot/arid environments [6-8]. 
According to [9-11], 30% of the failures that occur in power 
electronics are due to DC electrolytic capacitors. 

In this paper, a capacitor-less D-STATCOM based matrix 
converter as shown in Fig.1 will be used to provide the 
required reactive power compensation in low voltage network 
to improve the voltage profile in the distribution feeder. 
Experimental results will be presented using 7.5KVA 
experimental prototype.  

II. PROPOSED D-STATCOM SYSTEM  
The proposed D-STATCOM is shown in Fig.1. It consists 

of a three-phase supply with series impedance Ls connected to 
the three-phase load with large renewable penetration and 
inductive loads. The proposed D-STATCOM system consists 
of a three-phase matrix converter system connected to the 
point of common coupling (PCC) through an input filter and 
the MC output is connected to an inductive energy storage 
element LMC. The proposed D-STATCOM is controlled using 
finite control set model predictive control (FCS-MPC) 
programmed in the dSPACE control platform.  

A. Matrix converter model 
Matrix converter is a type of power electronics converters 

that can perform direct AC/AC power conversion without the 
use of electrolytic DC capacitors, and this will increase its 
reliability and service life in comparison to the traditional VSC 
[12]. As shown in Fig. 2, the power circuit of the matrix 
converter consists of nine bidirectional switches each 
comprised of two IGBT and diode pairs connected in anti-

 
Fig.  1 One-line diagram of distribution system. The proposed D-

STATCOM is shunt connected at a specific bus to provide the 
required compensation.  
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parallel to support bidirectional current flow. The MC is 
connected to the distribution network through an input filter to 
prevent the high-frequency switching harmonics from 
propagating to the network.  The output voltages and input 
currents of the MC were calculated according to (1), (2) and 
(3) as a function of MC input voltages, output currents and the 
switching function. The inductive load constrains the 
switching to avoid interruption of MC output current. The 
voltage-source input constrains the switching to avoid shorting 
the input phases. This constraint is expressed as: 

 SAy+SBy+SCy=1  where   y ϵ (a,b,c) (1) 
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where Voa(t), Vob(t) and Voc(t), Ioa(t), Iob(t) and Ioc(t) are the 
output voltages and currents of the matrix converter 
respectively. While, VsA(t), VsB(t) and VsC(t), iinA(t), IinB(t) and 
IinC(t) are the input voltages and currents of the matrix 
converter, and Sij(t) is the switching function for i is an element 
of (A,B,C) and j is an element of (a, b, c). Proper choice of S 
will lead to a phase-reversal of the current so that the inductive 
load appears capacitive at the input to the MC [13-15]. 

III. CONTROL SYSTEM  
The functional-block diagram of the proposed controller is 

shown in Fig. 2; it consists of two stages. The first stage is the 
reference current detection stage and the second is the model 
predictive control stage.  In the first stage, the voltage at the 
PCC is measured and the root-mean-square (rms) voltage 
value and angle are calculated. The instantaneous three-phase 
load currents are measured and decomposed into its real and 
reactive components using synchronous reference frame 
(SRF) method. or dq0 transformation method [4, 16, 17].  

The voltage regulator part compares the measured PCC 
voltage value with the required reference and the error signal 
is passed to PI controller to generate the required reactive 
current for voltage regulation which is added to the reactive 
load current component as in Fig. 3. The real component of 
the load current consists of a DC part that represents the 
fundamental component of the current and the AC part that 
represent the harmonics. Using a high pass filter (HPF), the 
harmonic component can be extracted and then transformed 

back to the ABC reference frame to be used as a reference 
current for the controller.  

The transformation to the d-q reference frame from the ABC 
reference frame is given in (4): 
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The second stage is the MPC stage, in this stage the MPC has 
two functions as in Fig.1. First, it predicts the future behaviour 
of the system using the system model, second it minimizes the 
error between the reference and the predicted signals in the 
next sampling period. This controller is simple to implement, 
and it has a fast dynamic response. To predict the output 
currents of the MC, the model for the MC output inductors is 
derived: 

 
( )
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 (5) 

To approximate the derivative in (5), forward Euler method 
is used for each kth discrete sample time steps: 
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From (5) and (6), the discrete-time model estimates the current 
at the next sample (k+1) is given as [18]: 

 
( 1) 1 ( ) ( )p LMC s s

o o o
MC MC

R T Ti k i k v k
L L

 
+ = − + 

   (7) 

where RLMC is the per-phase parasitic resistance of the output 
chokes. The input reactive power and the input current of the 
converter can be written in orthogonal coordinates as:  

 )( 1) ( ) ( ) ( ( )p
sins inQ k V k i k V k i kααβ β+ = −  (8) 
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where α and β are the real and imaginary components of the 
associated voltage and current vectors. ( 1)p

ini k + is the 

 
Fig.  2 Reference current detection based SRF  
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Fig.  3 Power converter power topology showing the 3x3 direct 

matrix converter with inductive load (LMC). In this topology there 
is no DC-link capacitor to wear out and fail. 
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predicted value of the D-STATCOM input current for the 
sampling interval (k+1).  

The cost function J is given as 
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where J is the cost function and IinA, IinB and IinC are the MC 
input currents, Ioa, Iob and Ioc  is the MC output currents. The 
weight factors λ1, λ2 are adjusted to priorities the different parts 
of the cost function. Optimal tuning of these weight factor is 
still an open topic for research [19, 20]. In this paper, manual 
tuning of the weight factors is performed according to the 
guidelines from [20]. The current phase reversal property of 
the matrix converter indicates that the ( )ini t  and )(tio are out 
of phase, which is the desired behaviour [14, 21-26].  

IV. EXPERIMENTAL RESULTS 
To verify the voltage profile regulation capability of the 

capacitor-less D-STATCOM, a prototype was implemented as 
in Fig.4 using parameters as given in Table 1. The 
experimental setup consists of Upstream side (12 kVA three-
phase grid simulator NHR-9410), downstream side 
(Electronic load from Cenergia), D-STATCOM unit (7.5 kVA 
Matrix converter unit with three-phase inductors connected at 
its the output side), and control platform (dSPACE Scalexio) 
to control the matrix converter.  

TABLE I.  SYSTEM PARAMETERS 

PARAMETER VALUE 

Voltage, VLN,rms 240 V 

Frequency 50Hz 

Reactive Power Q (3-ph) 3000 VAR 

Active power P (3-ph) 2000 to 4000 W 

Power Factor p.f 0.6-1 

Output chokes inductance LMC 36mH 
Input filter resistance Rf 2 Ω 
Input filter inductance Lf 10mH 
Input filter capacitor Cf/phase 12 uF 
Sampling time Ts 40µs 
Weight factor λ1 1 
Weight factor λ2 0.2 

The matrix converter unit consists of nine IGBT modules 
SK60GM123, isolated gate drive circuits, current direction 
detection circuit, clamp circuit for overvoltage protection, 
voltage transducers LEM LV 25-p and current transducers 
LEM LP 55. The dSPACE control platform consists of a 
processing unit and LabBox™ with 4 FPGA modules each 
module has 5 ADC 14bit resolution, 10 digital I/O pins and 5 
analogue output pins. The MPC strategy is implemented in 
dSPACE Scalexio processing unit, while the measurements 
and four-step commutation and protection are implemented in 
dSPACE LabBox™ unit. dSPACE ControlDesk™ software is 
used to supervise and control the experiment in real-time and 
view and store the experimental results and modify the desired 
control parameters during the experiment. 

It can be seen from Fig. 5 that before the D-STATCOM is 
connected the upstream providing the load with active power 
of 4000W and reactive power of 2750 VAR, while the D-
STATCOM reactive power is zero. Also, the active power 
change in the figure is due to the injected active power of 
2000W by photovoltaic system connected at the downstream 
side. The same experiment was repeated again with D-
STATCOM is connected. It can be seen that the source 
reactive power is dropped from +2750 VAR to around -750 
VAR and this negative reactive power are necessary to make 
sure that the PCC voltage is tracking its reference, and all the 
reactive power required by the load is provided by the shunt 
connected D-STATCOM. Fig.6 shows the power factor 
results, it can be depicted from the figure that the power factor 
varies from 0.6 to 0.8 as the load change when there is no and 

 
Fig.  6 Experimental setup of 7.5 kVA D-STATCOM 

 
Fig.  4 Experimental results of load active power (P-Load), 

upstream reactive power Q-Source, and  D-STATCOM 
reactive power Q-DSTATCM. 

 
Fig.  5 Experimental results of upstream power factor, as seen 

by the source. 
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compensation, and after the compensator is connected the 
power factor becomes unity regardless of the load change.  

The source voltage and current before the D-STATCOM 
is connected is presented in Fig.7, it could be noted that there 
is a phase shift between the voltage and the current. And in 
Fig.8 after the  D-STATCOM is connected it can be seen that 
source current is leading the voltage due to the reverse reactive 
power injection to the source. Fig.9 illustrates the D-
STATCOM reference and measured current, and it can be seen 
that controller managed to track the reference and provide the 
required compensation. Fig. 10 shows the PCC rms voltage, it 
can be noted that before the D-STATCOM is connected the 
PCC voltage the  the recommended standard, and after the D-
STATCOM is connected it starts to provide the required 
reactive power to keep the PCC voltage track its reference set 
value.  

In Fig. 11 the spectrum analysis of the upstream current 
after the connection of D-STATCOM is shown. It can be seen, 
that the current THD are within the range according to the 
recommendation of IEEE 519 standards [27].  

 CONCLUSION  
In this paper, a capacitor-less D-STATCOM based matrix 

converter was used to improve the voltage profile of the low 
voltage distribution network with distributed PV generation. 
The high penetration of PV in the distribution network has a 
significant impact on the voltage profile.  Results from the 
7.5KVA experimental setup show that the proposed shunt 

connected capacitor-less D-STATCOM approach has the 
capability to improve the feeder voltage profile.  

ACKNOWLEDGEMENT  
This publication was made possible by NPRP grant # 13S-

0213-200357 from the Qatar National Research Fund (a 
member of Qatar Foundation). The statements made herein are 
solely the responsibility of the authors. 

 
Fig.  7 Experimental results of upstram voltage (VSA) and 

current (ISA) before D-STATCOM is connected.  
 

 
Fig.  8 Experimental results of upstram voltage (VSA) and 

current (ISA) after D-STATCOM is connected. 
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Fig.  9 Experimental results showing D-STATCOM 

reference input current (IinA-Ref) and measured input current 
(IinA). 

 

 
Fig.  10 Experimental results of upstream rms voltage (VsA-

rms) before and after D-STATCOM is coneected.  
 

 
Fig.  11 Experiental results of upstream current spectra (IsA) 

while D-STATCOM is connected. 
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