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Abstract — The use of light-emitting diode (LED) lamps is 

increasing dramatically in many countries, spurred by energy 
conservation initiatives. Some countries have gone as far as to 
completely ban the old incandescent lightbulbs in favour of the 
more efficient LEDs. However, many of these LED lamps, 
particularly low-cost and non-dimmable models, act as non-
linear loads in the electrical power system, drawing non-
sinusoidal current due to the power electronic components 
inside them to provide the required rectified and regulated 
direct current (DC). Thus, while solid-state lightbulbs help in 
energy conservation, they can have the unintended consequence 
of lowering the power quality in the smartgrid electrical 
distribution network. In this paper, a matrix converter topology 
based distribution static synchronous compensators (D-
STATCOM) is proposed for use in the low voltage distribution 
network to compensate the harmonics generated from the LED 
lamps. The D-STATCOM is controlled using a finite control set 
model predictive control (FCS-MPC). Experimental studies 
were performed, and the results obtained showed the 
effectiveness of the proposed technology in harmonics power 
mitigation.  

Keywords— Solid-state LED lamps, D-STATCOM, 
Harmonics power mitigation, Model Predictive Control, Matrix 
Converter 

I. INTRODUCTION  
Lighting account for nearly 20% of the world’s electricity 

consumption [1]. Energy-saving LED lamps offer around 
65% reduction in electricity demand compared with the 
traditional incandescent lamps for the same luminous flux [2, 
3]. In many countries, the use of energy-efficient LED lamps 
continues to increase not only with the energy conservation 
driver but with for the laws applied in many countries to ban 
the use of incandescent lamps [4]. On the other hand, the 
operation of the solid states LED lamps require power 
electronic drivers to convert the AC to DC and perform power 
factor correction, which inherently has non-linear 
characteristics. LED lamps draw significant non-sinusoidal 
current and produce harmonics pollution in distribution 
network [4, 5]. The negative effects of harmonics on power 
system components and user equipment are well studied in the 
literature [6].  

In this regard, there is a pressing need to mitigate this 
harmonic pollution locally near its source. D-STATCOM and 
shunt active power filters (SAPF) are the most dominant 
technology available for power quality and harmonic power 

mitigation in distribution networks. Typically, the D-
STATCOM and the SAPF topology is based on the voltage 
source converter (VSC) [7, 8] which make use of electrolytic 
capacitors (e-caps) to stores the energy needed. However, e-
caps have well-known failure modes and have been shown to 
exhibit accelerated wear and tear in hot climatic conditions. 
Failure types of DC capacitors are presented in [9] with an 
estimated 30% of power electronics failures occurring mainly 
because of the capacitors [10, 11]. In order to overcome the 
well-known failure modes of the existing VSC topologies, a 
matrix converter (MC) based capacitor-less D-STATCOM is 
proposed as a good alternative to replace the standard VSC 
topology [12-22].  

In this paper, a capacitor-less D-STATCOM based matrix 
converter, as shown in Fig.1 will be used to provide the 
required harmonics mitigation in the distribution network.  
Experimental results will be presented using 7.5 kVA 
experimental prototype.   

II. SYSTEM STRUCTURE  
Typical distribution system network consists of number of 

loads connected at the medium and low voltage sides. At the 
low voltage network, a large number of loads including non-
linear loads (solid states LED lamps) and linear inductive 

 
Fig. 1. Distribution system one-line diagram showing the hierarchy of  

voltages from sub-transmission down to the load. The D-STATCOM is 
shunt-connected at a specific bus in the distribution network. 
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loads connected at different locations via distribution 
transformer as shown in Fig. 1. To mitigate the harmonics and 
other power quality issues, D-STATCOM based matrix 
converter is connected at the PCC near the point of load 
connection as in the figure below. The aggregate behaviours 
of the solid-state LED lamps are represented as full-wave 
three-phase bridge rectifier as in Fig. 2. The D-STATCOM 
system is based on direct matrix converter with inductive 
energy storage connected at the output side of the converter.  

A. Load model 
The share of non-linear loads in the distribution network has 

increased dramatically due to the increasing adoption of 
power-electronics enabled devices in commercial and 
residential sectors. The loads in the low voltage distribution 
network consist of linear loads and a significant percentage of 
non-linear loads that include LED lights. In this paper, the 
worst-case scenario is considered in which 100% of the loads 
are non-linear on the distribution feeder, and this scenario is 
used here to evaluate the performance of the D-STATCOM 
under this high-penetration condition. The aggregate behavior 
of the non-linear loads can be represented by a three-phase 
diode bridge rectifier with DC voltage capacitors and resistors.   

B. D-STATCOM model 
Three-phase MC is the main building block in the proposed 

D-STATCOM. It consists of a matrix converter with inductive 

energy storage controlled using dSPACE platform based on 
MPC control strategy.  

1) Matrix converter model 

The direct matrix converter system used in this application 
consists of topology depicted in Fig. 3. the MC power board 
consists of an array of nine bidirectional switches each switch 
comprised of two IGBT parallel diode pairs connected in the 
anti-parallel configuration. The MC is connected to the 
network bus through an input filter Lf, Cf, Rf. This filter is used 
to eliminate high-frequency harmonics from propagating to 
the rest of the network. The output voltages and input currents 
of the MC were calculated according to (1), (2) and (3) as a 
function of MC input voltages, output currents and the 
switching function. The inductive load constrains the 
switching to avoid interruption of MC output current. The 
voltage-source input constrains the switching to avoid 
shorting the input phases.  
 SAy+SBy+SCy=1  where   y ϵ (a,b,c) (1) 
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where Voa(t), Vob(t) and Voc(t), Ioa(t), Iob(t) and Ioc(t) are the 
output voltages and currents of the matrix converter 
respectively. While, VSA(t), VSB(t) and VSC(t), IiA(t), IiB(t) and 
IiC(t) are the input voltages and currents of the matrix 
converter, and Sij(t) is the switching function with i=A,B,C, 
and j =a,b,c. Proper choice of S will lead to a phase-reversal 
of the current so that the inductive load appears capacitive at 
the input to the MC to supply reactive power to the network 
[13, 14, 23]. 

C. D-STATCOM Control  
FCS-MPC is used to control the converter to provide the 

required power quality mitigation. There are several control 
schemes reported in the literature to control the MC, 
including, repetitive control, resonant, proportional-integral 

 
Fig. 3. Power converter power topology showing the 3x3 direct 

matrix converter with inductive load (LMC). Since there is no dc link, 
there are no dc bus capacitors to wear out and fail. 
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Fig. 2. Model of the radial distribution network at the connection bus for the D-STATCOM. The upstream refers to moving in the direction toward the 

distribution transformer and downstream refers to moving away from the distribution transformer. 
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(PI) control, and model predictive control [14, 24-30]. 
Research results show that MPC is the most promising 
alternative due to its simplicity and flexibility to include 
additional terms in the controller and prioritise there relative 
importance using weight factors [30]. The controller starts 
with reference current generation then model predictive 
control to track the reference currents.  

1) Reference current detection: 

For reference current detection the synchronous rotating 
reference frame (SRF) are most widely used and it has been 
adopted in this paper [31]. In this step, the load currents and 
voltages are measured, filtered, and reference currents are 
extracted according to the synchronous reference frame (SRF) 
method. SRF theory is based on the transformation of currents 
in synchronously rotating d–q frame [32, 33]. The 
transformation to the d-q reference frame from the ABC 
reference frame is given as 

 
LA

LB

LC

Id cos( ) cos( 2 / 3) ( 2 / 3) I
2

Iq sin( ) sin( 2 / 3) sin( 2 / 3) . I
3

I0 I1 / 2 1 / 2 1 / 2

t t t

t t t

ω ω π ω π

ω ω π ω π

− +

= − − − − +

    
    
    
        

 (4) 

The block diagram of the SRF method is shown in Fig. 4. The 
three-phase load current is measured then transformed to the 
dq0 reference frame to extract the active and reactive current 
components of the load current; the new components consist 
of DC part that represents the fundamental component of the 
current and the AC part that represent the harmonics. Using a 
high pass filter (HPF), the harmonic component can be 
extracted and then transformed back to the ABC reference 
frame to be used as a reference current for the controller. 

2) Finite control set model predictive control  

The structure of the FCS-MPC used in this paper is shown 
in Fig.5. The voltage at PCC VS(k), the input current of MC 
Ii(k), the input voltage of MC Ve(k) and the output current Io(k) 
are measured in each sampling period. These values are used 
to predict the future values of the input current Ii(k+1) and 
output currents Io(k+1).  Using the model of the MC, the 
controller will predict all the values of the input and output 
current for each switching state and select the state that returns 
the minimum value of the cost function (J). In order to predict 
the output currents of the MC, the model for the MC output 
inductors is derived as 

  (5) 
The derivative in (5) is approximated using the forward Euler 
method for each kth discrete sample time steps: 

 S

ooo

T
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≈
 (6) 

From (5) and (6), the discrete-time model estimates the current 
at the next sample (k+1) is given as [34]: 
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The input filter model as shown in fig. 1, can be represented 
by following continuous-time equations: 
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where vs, ve are the input and output voltages of the filter and 
iin and ie are the input and output currents of the filter. The  
state-space model of the filter can be written as 
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Adding the coefficient of the system matrices results in 

 *

*

1 10 0
( ) ( ) ( )

( )1( )1( ) 0

cc BA

f fe e

f eii

ff f

sC CV t V t V t
R i ti ti t

LL L

   
                            
     

−

== +
− −



 (11) 

Finally, the discrete model of the input filter using zero-
order hold and sample time Ts is given by [34] 
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where 
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Finally, the discrete-time form of the input currents for a 
sampling time Ts can be written as [34] 
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Fig. 4. Reference current detection based on SRF. 
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The cost function can be written as 
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where J is the cost function and Iiα and Iiβ are the MC input 
currents, Ioα, Ioβ is the MC output currents. The weight factors 
λ1, λ2 are adjusted to priorities the different parts of the cost 
function. Optimal tuning of these weight factor is still an open 
topic for research [35, 36]. In this paper, manual tuning is 
performed according to the guidelines from [36]. 

III. EXPERIMENTAL RESULTS 
To verify the harmonics compensation capability of the 

capacitor-less D-STATCOM, a hardware testbed and D-
STATCOM converter, shown in Fig.6, was developed to test 
the system in Fig. 2. System parameters are provided in Table 
I. The testbed consists of an upstream side (12 kVA three-
phase grid simulator NHR-9410), a downstream side 
(electronic load from Cenergia), D-STATCOM unit (7.5 kVA 
matrix converter unit with three-phase inductors connected at 
its the output side), and control platform (dSPACE Scalexio) 
to control the matrix converter.  

TABLE I.  SYSTEM PARAMETERS 

PARAMETER VALUE 

Voltage, VLL 415V 

Frequency 50Hz 

Source impedance (Ls) 1mH 

Three-phase bridge rectifier DC capacitor (C_NLL) 40uF 

Three-phase bridge rectifier resistor (R_NLL) 125 Ohm 

Output chokes inductance LMC 36mH 
Input filter resistance Rf 1 Ω 
Input filter inductance Lf 2.5mH 
Input filter capacitor Cf/phase 12 uF 
Sampling time Ts 40µs 
Weight factor λ1 1 
Weight factor λ2 0.1 

 

The matrix converter unit consists of nine IGBT modules 
SK60GM123, isolated gate drive circuits, current direction 
detection circuit, clamp circuit for overvoltage protection, 
voltage transducers LEM LV 25-p and current transducers 
LEM LP 55. The dSPACE control platform consists of a 
processing unit and LabBox™ with 4 FPGA modules each 

module has 5 ADC 14bit resolution, 10 digital I/O pins and 5 
analogue output pins. The MPC strategy is implemented in 
dSPACE Scalexio processing unit, while the measurements 
and four-step commutation and protection are implemented in 
dSPACE LabBox™ unit. dSPACE ControlDesk™ software is 

 
Fig. 6. Experimental results of upstream phase voltage (VsA) and 
current (IsA) before compensation. 

 
Fig. 7. Experimental results showing source current (IsA) spectra before 
compensation. 

 
Fig. 8. Experimental results showing three phase voltages at PCC 
before compensation. 

 
Fig. 9. Experimental results showing source voltage (VsA) spectra 
before compensation.  

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14

Time

-500

-250

0

250

500

V
ol

ta
ge

 (V
)

-50

-25

0

25

50

C
ur

re
nt

 (A
)

VsA
IsA

Frequency

M
ag

 (%
 o

f F
un

da
m

en
ta

l)

Fundamental (50Hz) =4.0313 THD=83.1519%

0 5 10 15 20 25
0

10

20

30

40

50

60

95
100

0.3 0.31 0.32 0.33 0.34 0.35 0.36

Time

-500

0

500

V
ol

ta
ge

 (V
)

VsA VsB VsC

Frequency

M
ag

 (%
 o

f F
un

da
m

en
ta

l)

Fundamental (50Hz) =235.3744 THD=4.4678%

0 5 10 15 20 25
0

1

2

3

4

99

100

 
Fig. 10. Experimental setup of 7.5kVA D-STATCOM. 
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used to supervise and control the experiment in real-time and 
view and store the experimental results and modify the desired 
control parameters during the experiment.  

Initially, the LED load is connected to the grid-simulator 
source, and the performance of the system without the D-
STATCOM is determined. Fig. 7 shows the experimental 
results of the supply voltage and current of phase (A) 
measured in volt and ampere respectively. Initially, it can be 
seen that the source current is distorted with total harmonics 
distortion (THD) of 83.1% as can be seen in Fig.8. The 
distorted source current interact with the series source 
impedance and negatively affect the source voltage as can be 
seen in Fig.9. Spectrum analysis of upstream voltage is shown 
in Fig.10 with THD of 4.4%. After the D-STATCOM is 
connected to the PCC, Fig. 11 shows the source voltage and 
current, and it can be noted that the source current becomes 
sinusoidal with THD of 7% as can be observed in spectrum 
analysis in Fig.12. After connecting the D-STATCOM to the 
system the three-phase source voltage looks sinusoidal with 
low distortion of 1% as in Fig.13 and Fig.14. D-STATCOM 
input current waveforms compared with the reference is 
shown in Fig. 15. It can be seen that after D-SATCOM is 
connected the controller was able to control the converter and 
achieve good tracking of the input currents of the converter.  
 

IV. CONCLUSION  
In this paper, the performance of capacitor-less D-

STATCOM controlled using FCS-MPC is presented for 
harmonics compensation due to the increased use of non-
linear solid-state LED lights in low voltage distribution 
network. FCS-MPC is used to control the proposed converter, 
and synchronous reference frame method is adapted to 
generate the reference current for the MPC. Results from the 
7.5kVA experimental setup show that the proposed shunt 
connected D-STATCOM is able to provide good harmonics 
mitigation even with large integration of non-linear solid 
states lights in low voltage network.  
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Fig. 12. Experimental results of upstream phase voltage (VsA) and 
current (IsA) after compensation. 

 

 
Fig. 13 Experimental results showing source current (IsA) spectra after 
compensation. 

 

 
Fig. 14. Experimental results showing three phase voltages at PCC 
after compensation. 

 

 
Fig. 15. Experimental results showing source voltage (VsA) spectra 
after compensation. 
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Fig. 11. Experimental results showing the input current (IiA) tracking the 
reference (IiA-Ref) using MPC after compensation. 
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