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Abstract— Due to the transformation of the electricity 

system, the system operators emphasize the maximum 

utilization of the existing network elements, such as 

transmission lines. Full utilization requires accurate tracking of 

the conductors’ thermal behavior, which can also form the basis 

of the dynamic line rating (DLR) method. Due to these 

international trends, continuous monitoring of high-voltage 

transmission lines and developing resilience-increasing systems 

are becoming more common. The primary purpose of this paper 

is to demonstrate the operation and applicability limit of 

international DLR models and their conductor temperature 

tracking approach based on EU-funded international projects. 

The paper investigates two independent conductor thermal 

monitoring sensors and compares their measurements with the 

model results, highlighting key findings of the projects. A novel, 

neural network-based DLR concept is introduced based on the 

results presented, emphasizing its structure and operation steps. 

The advantages of the new concept in terms of conductor 

thermal tracking and power line rating are also presented in 

detail. One general novelty of the proposed concept is that it 

makes the transfer capacity calculation model operate 

independently from the line monitoring sensors over time. Thus, 

these devices can be dismantled or relocated to other spans or 

power lines based on the system operators’ decisions. In this 

way, the novel concept has not only technological but also 

significant economic benefits. 

Keywords—power line, grid resilience, dynamic line rating, 

DLR, neural network, soft computing 

I. INTRODUCTION  

During the operation of the electricity system, the main 
goal is to maximize the utilization rate by always maximizing 
the power flow based on the set of limiting factors [1]-[3]. For 
most power lines, this limiting factor is the conductor's upper 
design temperature, which cannot be exceeded to avoid sag-
clearance and annealing problems [4]-[6]. To maintain safe 
operation, transmission system operators have used static line 
rating or seasonal rating to determine the power lines’ transfer 
capacity based on the worst-case combination of the 
environmental parameters [2][7]. However, these concepts no 
longer result in economic operation due to the electricity 
systems’ trends in the recent decades [8]. One significant 
challenge of the electricity grid is the integration of the 
increased renewable energy sources resulting in intermittent 
power flow conditions [8]-[11]. These phenomena force the 
TSOs to track the thermal conditions of transmission lines 
more accurately. The economical and safe operation can only 
be ensured within these operating conditions if the power 
lines’ transfer capacity limit is set dynamically and adapted to 

real-time weather and load conditions [9][12]. This method – 
the so-called dynamic line rating (DLR) – requires sensory 
monitoring of transmission lines and weather parameters 
around the phase conductors [7][9].  
This paper presents a novel, soft-computing-based DLR 
concept that provides a more accurate conductor temperature 
calculation than the international models. Moreover, its DLR 
calculation can operate independently of sensory 
measurements over time. 

II. MOTIVATION  

A. Existing DLR systems and approaches 

The most common DLR models in the international 
literature are the CIGRE and IEEE [4]-[6]. These models 
approach the line rating issue through the conductor's thermal 
conditions [13]-[15]. Despite minor differences, their 
operation is similar under conservative circumstances [16]. In 
this paper, IEEE and CIGRE models are under the term 
“physical models”, and those cases are presented where their 
outputs are close to each other.  

The core of IEEE and CIGRE is that the conductor is in 
thermal equilibrium with its environment, so its temperature 
is affected by weather and load parameters [4][6]. Whether 
these environmental parameters change, the models 
distinguish between steady-state heat balance and transient 
state. The steady-state heat balance can be described with 
Equation (1), in which the individual cooling and heating 
factors, and thus the environmental parameters, are treated 
separately. 

𝑃𝐽 + 𝑃𝑆 + 𝑃𝑀 + 𝑃𝑖 = 𝑃𝑐 + 𝑃𝑟 + 𝑃𝑤 (1) 

Where PJ is the Joule heating, PS the solar heating, PM the 
magnetic heating, Pi the corona heating, PC the convective 
cooling, Pr the radiative cooling, and Pw the evaporative 
cooling. In the case of the transient state, the thermal equation 
is modified since the conductor can store heat that could 
increase its temperature, as seen in Equation (2). 

𝐻𝑒𝑎𝑡 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 = 𝐻𝑒𝑎𝑡 𝑔𝑎𝑖𝑛 − 𝐻𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 (2) 

Both IEEE and CIGRE models have formulas for conductor 
temperature tracking and line rating calculation, which are 
strongly related. 

B. Experiences from international projects 

Several international projects have compared line 

monitoring devices, conductor thermal behavior tracking, 

and dynamic line rating in recent years [12][13][17]-[19]. 

Given that the line rating of an observed transmission line is 
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closely related to the conductor's thermal behavior, this paper 

focuses on conductor temperature tracking. This approach 

also makes it possible to compare the actual measurement 

results with the calculations by the physical models.  

The data of two sensors (Sensor #1 and Sensor #2) 

operating on different measurement principles were used in 

the analysis. The technical parameters of the sensors are 

given in Table I. 
 

TABLE I. Technical parameters of the applied sensors 

Properties Sensor #1 Sensor #2 

Sensor placement Phase conductor Tower structure 

Measured parameter Conductor temperature Conductor sag 

Measuring unit [°C] [m] 

Measuring 
uncertainty 

±1°C (-20°C to 100°C) 
±0.05 m  
(all circumstances) 

 

Sensor #1 measures the conductor’s surface temperature since 
that device is installed on the phase conductor, while Sensor 
#2 monitors the sag without any physical contact. Sensor #2 
calculates the average temperature of the conductor with an 
accuracy of ±2 °C based on a CIGRE guideline [4].  

 

Fig. 1. Comparison of Tcond measurements with physical model calculation 

In Fig. 1., the measured and calculated conductor temperature 

values are compared. On the x-axis, Sensor #1 and Sensor #2 

records are shown, while on the y-axis, values calculated 

from the CIGRE model based on the weather station data are 

presented. Both sensors monitor the lower phase conductor 

of a single-circuit, 400 kV power line. It is clear from Fig.1. 

that the deviation is greater than the accuracy class of the 

sensors in many cases over six months. 

 

Fig. 2. a) Comparison of conductor temperature measurements by different 

sensors; b) Boxplots of temperature differences regarding sensor 

measurements and physical model calculations. 

In Fig. 2 a), the scatter plot calculated from the measurements 

of the two sensors is presented. It is seen that a significant 

difference can be between the conductor surface and its 

average temperature. Fig. 2 b) shows box plots in the 

temperature differences calculated by the two sensors and the 

physical model. The mean values are around 0 °C; however, 

the standard deviation and variance exceed the sensors’ 

technical specifications. Table II. shows the seasonal 

variation of standard deviations for a 400 kV transmission 

line. 
 

TABLE II. The average standard deviation of the physical model from 

sensor measurements in all seasons, 400 kV power line 

Season 
Standard deviation 

Sens. #1 – Physical model 
Standard deviation 

Sens. #2 – Physical model 

Summer 5.20 °C 7.03 °C 

Autumn 4.51 °C 5.96 °C 

Winter 4.00 °C 5.23 °C 

Spring 5.03 °C 6.74 °C 

 

Table II. presents that the average conductor temperature 
calculated by the physical model can deviate by up to 5 °C 
from the surface temperature measured by Sensor #1 in the 
warmer summer month. This difference can exceed 7 °C by 
the average temperature measured by Sensor #2. This thermal 
deviation may also affect the DLR calculation. 

The deviation shown plays a considerable role when, for some 
reason, sensory measurements are not available. Excellent 
examples are those cases when the line load is so low that a 
current transformer supply cannot be solved for sensor 
operation. A short case study is presented in Fig. 3. 

 

Fig. 3. Hourly line load distribution in a month 

Fig. 3 shows an hourly breakdown of line load over a 
randomly chosen month. There are periods when the phase 
current does not reach the 65 A required for the current 
transformer to operate. In these cases, the sensor does not send 
data; thus, the conductor temperature is only available via 
different models’ calculations. Suppose such a situation 
occurs on a colder day when the system operator wants to 
implement anti-icing on power lines. In that case, it is essential 
to have an accurate conductor temperature model. 

C. Lessons learned from international projects 

 Based on the performed analysis, several important 
conclusions can be drawn. 

• The measurement principles of the sensors determine 
what conductor temperature (surface or average) the 
device measure or calculate.  

The surface and the average conductor temperature can differ 
significantly [4][5]. Contact sensors always measure the 
surface temperature at that point. However, the surface 
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temperature is only essential for annealing problems as a 
potential local fault location. In those cases where the sag-
clearance ratio forms boundary conditions, the average 
conductor temperature is the most critical parameter. 

• There are circumstances when some of the line 
monitoring sensors cannot operate. In these cases, the 
accurate temperature calculation is favorable. 

Conditions such as low-current may occur in the transmission 
line under which specific sensors (i.e., current-transformer 
supplied devices) do not operate. In these cases, the accuracy 
of the conductor temperature models is significantly 
enhanced. 

• The conductor temperature calculated by the physical 
(IEEE and CIGRE) models may differ significantly 
from the measurement of the monitoring sensors.  

This is consistent with other papers’ findings and can be 
demonstrated for several transmission lines [4][9]. The 
discrepancy can be traced back to several reasons. First, the 
physical models deal separately with the heating and cooling 
effects on the conductor, which are difficult to combine into 
an empirical form. Second, the mentioned models contain 
negligence that may affect the computational results. Third, 
the input parameters required for IEEE and CIGRE models are 
often measured not directly in the conductor environment but 
where the weather station can be installed (on the legs of the 
steel tower). This does not guarantee that the conductor 
thermal ratio will be determined under the right conditions. 

• There is a need for a new approach independent of the 
IEEE and CIGRE models that allows for more accurate 
and economic DLR calculations. 

Given that the thermal conditions and line rating are closely 
related during the operation of the IEEE and CIGRE models, 
less accurate conductor temperature monitoring may also 
result in a less precise line rating. Therefore, more emphasis 
should be placed on calculating the thermal conditions of the 
conductor. 

III. INTRODUCTION OF THE NOVEL DLR CONCEPT 

The novel concept presented in this paper needs to fulfill 
three criteria to ensure the economic operation of power lines; 
follow the conductor's thermal conditions well, provide safe 
and secure operation, and calculate line rating dynamically 
(DLR). Before introducing the concept, the conductor 
temperature tracking and the line rating calculation models are 
presented in detail. These models are firmly connected, and 
their operations form the basis of the novel concept described 
in the later chapters. 

A. The conductor temperature model 

When tracking the thermal conditions of the conductor, an 
obvious solution may be to use the measurements of the line 
monitoring sensors in terms of their accuracy, reliability, and 
resolution [20][21]. The more significant challenge is how to 
replace these costly devices in a way that does not 
significantly impair the accuracy of conductor temperature 
tracking. One good option can be the application of neural 
networks, which are used in other energy sector branches [22]-
[25]. Neural networks are favorable because they are adaptive 
and can recognize patterns that can replace complex analytical 
relationships during training. Previous experience has shown 
that if a suitable training dataset is available, a neural network 

can calculate a conductor temperature with a more minor 
standard deviation than the IEEE or CIGRE models [21].  

B. Parameter setting for the neural network 

The proper functioning of neural networks requires a 
sufficient dataset to recognize patterns [26]. When choosing 
the network parameters correctly, the input and output 
combination is essential. In the present case, the input 
parameters are the environmental and load factors measured 
by the weather stations, while the output is the conductor 
temperature. However, based on experiences, it is a relevant 
question that surface and average conductor temperatures are 
different. A multivariate regression analysis was also 
performed for several transmission lines to determine which 
temperature is better explained by measured environmental 
parameters [27]. The result of a 220 kV single-circuit and a 
400 kV double-circuit power line is presented in Table III. 

TABLE III. Regression analysis of conductor temperature measurements 

Parameter 
220 kV power line 400 kV power line 

Sensor#1 Sensor#2 Sensor#1 Sensor#2 

Multiple R 0.91 0.87 0.98 0.94 

Adjusted R 
Square 

0.83 0.75 0.96 0.89 

Standard Error 2.66 3.95 1.98 3.70 

Observations 20799 19094 

 

Based on Table III., Sensor #1 has a lower determination 
coefficient and standard error for both power lines. This 
means that the applied weather parameters explain better the 
surface temperature than the average one in a simple, linear 
model. Then, it was investigated by a T-test which weather 
parameters are statistically relevant in a potential model. 
Comparing the P-value (at α = 0.05) of each parameter, it was 
found that all the traditionally measured weather (ambient 
temperature, solar radiation, wind speed, wind direction) and 
load parameter (SCADA current) are relevant. Although the 
operation of a neural network differs from a single linear 
statistical model, these results form a reasonable basis for 
setting the network’s parameters. 

C. Applied network type and structure - experiences 

Various neural networks can be used for each problem, 

including conductor temperature calculations [26]. This 

paper applies a cascade forward neural network with nearly 

70 neurons in three regular and one.  

 

 
Fig. 4. Comparison of conductor temperature measurements of Sensor #1 to 

neural network model; a) Summer month; b) Winter month 

The network requires five inputs, 4 of which are the already 

mentioned weather parameters, while the last one is the actual 
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current extracted from the SCADA system. Neural network 

performance was measured by mean square error, and 

training was performed according to the LM method using a 

12-month, quarter-hour data set. In Fig 4., data from Sensor 

#1 mounted on a European 110 kV transmission line were 

used in the evaluation. The scatter plot presents the neural 

network's performance after a one-year training period. The 

goodness of fitting is above 98% for the summer and winter.    

 
Fig. 5. Box plots of conductor temperature calculation deviation; a) Summer 

month; b) Winter month 

In Fig. 5. the box plots of the neural network (NN) and 

physical model (PHY) are presented as output layers for the 

same periods. The mean value for the summer case is 0.30 

°C, the 25th percentile is -0.03 °C, and the 75th percentile is 

0.62 °C. The trends are the same for a colder period. This 

performance is close to the devices’ accuracy range, resulting 

in a more accurate temperature calculation than the physical 

models. 

D. Line rating calculation model 

 Assuming a transient state, the line rating for a given 
timestamp can also be calculated from the combination of the 
conductor temperature and the weather parameters using 
Equation (3) [4][5].  

𝐼2 · 𝑅 = 𝑐 · 𝑚 ·
𝑑𝑇𝑎𝑣

𝑑𝑡
− 𝑃𝑆 − 𝑃𝑀 + 𝑃𝑐 + 𝑃𝑟 (3) 

Where c is the specific heat capacity of the conductor  
(J·kg-1 ·K-1) and m is the mass per unit length of the 
conductor (kg·m-1), dt is the applied period (s) and I is the  
line rating (A). When there is no steel core in the conductor, 
PM = 0. In the case of the ACSR (aluminum steel reinforced 
conductors) [5]: 

𝑐 · 𝑚 = 𝑐𝑎 · 𝑚𝑎+𝑐𝑠 · 𝑚𝑠 (4) 

The subscripts a and s refer to the non-ferrous and ferrous 

sections of the conductor, respectively. In the conductor 

temperature change, the general aim is always to reach the 

upper thermal limit of the line. In this way, the so-called line 

rating is always adjusted to the changing environment 

resulting in a dynamic rating limit.  

E. The presentation of the novel concept 

Applying the presented models, a complex, novel concept 

can be built for a resilient, flexible system. The process 

diagram of the novel concept is shown in Fig. 6. The new 

concept starts similarly building up a traditional DLR system 

- line monitoring sensors and weather stations must be 

installed on the observed power line. These sensors can 

determine the conductor temperature with the accuracy 

described above. The main innovation of the concept is that 

the sensory conductor temperature measurement can be 

replaced using a neural network after a specific time. These 

sensor measurements function as a training dataset in the first 

year of the operation. The appropriate network learns to 

predict the proper conductor temperature for an input 

combination. Thus, after the training period (one year above 

the sensor calculation period), the sensor can be dismantled 

and freely transferred to other transmission line sections or 

another transmission line. 

 
Fig. 6. The novel, soft computing based DLR concept’s process diagram  

Since the surface temperature of the conductor can be 
calculated with greater accuracy from the environmental 
parameters, the use of contact sensors is necessary. Thus, in 
the beginning, the sensor and later the neural network will also 
determine the surface conductor temperature. At this point, it 
is required to adjust to the limits of the operational conditions; 
in other words, whether sag-clearance or annealing causes a 
problem in the given case [4]. If sag-clearance conditions form 
the operation limit, the surface temperature needs to be 
converted to an average conductor temperature as it is closely 
related to sag [4][5]. For this purpose, the conductor surface 
measurements should be averaged and then the core 
temperature needs to be calculated using Equation (5) 
[5][28][29]. 

𝑇𝐶 − 𝑇𝑆 =
𝑃𝑇

2 · 𝜋 · 𝜆
· [

1

2
−

𝐷1
2

𝐷2 − 𝐷1
2 · (𝑙𝑛

𝐷

𝐷1
)] (5) 

Where λ is the effective radial thermal conductivity 

(W·m-1·K-1), PT the total heat gain per unit length (W·m-1), D 

the overall diameter of conductor (m) and D1 the internal 

diameter of a steel core (m). Although the sag depends on the 

average conductor temperature, using the core temperature 

seems to be a good approximation in most cases. 

In those cases where the conductor operates at a higher 

temperature (close to 100 °C), the annealing as a potential 
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fault root can also occur. In these cases, the highest surface 

temperature should be used for line rating calculation instead 

of the average conductor temperature.  

When both sag-clearance and annealing are limiting 

factors, both core and surface temperatures need to be 

calculated, and that one should be chosen which causes 

thermal problems sooner.  

The line rating model can calculate the transfer capacity 

in real-time based on the calculated core temperature, surface 

temperature, or both. Choosing the lowest line rating 

calculated for each section, the transfer capacity can be 

extended to the whole power line. Thus, a safe and economic 

DLR system can be implemented. 

F. Novelty, advantages, and application limits 

The new concept has three significant advantages over 

previous approaches based on IEEE and CIGRE models. The 

first advantage is that neural networks allow a more accurate 

conductor temperature calculation than the physical models, 

thus making it easier to avoid problems due to possible 

thermal overloads. Using an appropriate amount of training 

data, the sensor measurements' accuracy range is possible via 

calculations. 

The second significant benefit is that the new approach 

can reduce sag-clearance and annealing risk. The new 

concept considers that annealing is mainly related to the 

surface temperature while sagging is closely associated with 

the average conductor temperature. 

The third great advantage of the developed concept (and 

the more accurate conductor temperature calculation) is that 

the system does not require sensory monitoring after training. 

The devices can be freely dismantled and relocated to other 

transmission sections or lines. This allows additional network 

elements to be economically integrated into DLR systems or 

a distributed sensor installation strategy on already selected 

transmission lines. 

Regarding the application limitations, it is essential to 

mention that adequate training data is required for the neural 

network to function correctly. This also means that the 

sensors can only be relocated if they have been operating for 

at least one year. Nevertheless, the new concept allows for a 

significantly new approach from existing trends, resulting in 

more accurate and cost-effective DLR systems. 

IV. CONCLUSION 

Accurate tracking of the thermal conditions of 
transmission lines is key to a proper dynamic line rating 
system. When sensory observation cases are not provided, 
conductor temperature calculation models play a vital role. 
Several international projects have taken place and are 
currently underway to provide measurements of various line 
monitoring sensors. Based on the comparison of the measured 
conductor temperatures, the experience is that there may be a 
significant difference between the surface and average 
conductor temperature values. In addition, the analyses show 
that the physical models' calculations and the measured results 
are also inconsistent. Because of the close relationship 
between the thermal behavior of transmission lines and line 
rating, a new soft computing-based conductor temperature 
model based on accurate sensor measurements has been 
developed. Taking advantage of the neural network, the new 
conductor temperature tracking model has been incorporated 
into a concept that can significantly transform the operational 

practices of DLR systems. The three main advantages of the 
new concept are that it results in more accurate thermal 
monitoring than previous physical models, handles sag and 
annealing problems separately, and calculates line ratings 
after a specified time without sensory measurements. The new 
concept is technically and economically relevant, as the 
dismantled sensors can be relocated to other transmission line 
sections or even to new transmission lines. 
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