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Abstract— This project shows the methodology for the design
and implementation of an isolated photovoltaic energy system to
power low consumption equipment, a specific case of monitoring
physical variables. The methodology consists of the
characterization of the site, the calculation of the energy
demand, the design of the photovoltaic system and its
implementation. The PVsyst software is used as the main tool to
generate the simulations and obtain the results. The final
objective of the project is to obtain the adequate parameters for
the choice of the components of the photovoltaic system
(photovoltaic panel, controller, battery). In addition, this article
will serve as a tutorial for researchers who wish to generate
similar projects.
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L INTRODUCTION

Taking measurements of physical phenomena is currently
a necessity to determine characteristics, understand the
behavior of said variables and show results; For this,
electronic measuring equipment is required. Some of these
systems demand to be located in areas where conventional
electricity is lacking. For the specific case when taking
measurements of a river at different points, it is necessary to
have a team that is on the banks to obtain exact results of what
you want to measure.

Having a self-sustaining energy measurement system that
only requires scheduled preventive maintenance is a
significant contribution for those applications that seek to
measure physical phenomena through electronic devices that
require energy supply, indicates [1].

Several solutions can be implemented for the energy self-
sustainability of an isolated system, among some of them [2]
is cited, who within his research work proposes energy
storage using ultracapacitors in autonomous photovoltaic
systems, [3] conducts a study of hybrid renewable energy
system (solar - biomass gasification) to meet energy needs.
Indicates in his study carried out by [4] describes an
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experimental methodology for the development of a
prototype of an electric hydrogenerator as a generation
alternative in rural areas showing an efficiency of 95%. The
work developed by [5] shows the results of a hybrid system
of photovoltaic and wind energy in small isolated energy
systems.

The investigative work of [6] shows that energy
generation through photovoltaic systems is currently one of
the most common alternatives to provide a solution to the
energization of electrical and electronic equipment in which
there is no network of electricity. conventional electrical
distribution. In this same sense, [7] concludes, additionally
providing the advantage of applicability to any type of
geographical location.

Currently several works have been developed on the
subject under discussion and it is thus that at a global level
one of the main isolated systems for obtaining and
transmitting information that requires energy self-
sustainability are artificial satellites. According to [8], it
shows the use of two main photovoltaic generators as a power
source for an artificial satellite by exposing it to the sun. A
contribution of a doctoral work carried out by [9] exposes the
results of the implementation of solar cells for space use as
the main power source of the artificial satellite of scientific
applications SAC-A of the CONAE in Argentina.

Several authors [10], [11], [12] expose the design,
simulations and implementation of a measurement station
powered by an isolated photovoltaic system and management
of the transmission of information measured by different
sensors (solar radiation, velocity of the wind, temperature,
etc.) quantify the resources used by solar radiation and
temporarily analyze the results obtained.

Adopting for the implementation of a renewable solar
energy system is convenient given its low cost and its
reliability in the electrical service for isolated systems [13]
concludes in its design of an autonomous photovoltaic system
for the supply of electrical energy. In the development of the
investigation of [14] he contributes with a complete analysis
on the reliability of photovoltaic technology, doing



laboratory work on the technical quality of the components
(batteries and regulators). Other very relevant works that
contribute substantially to the implementation of these
projects are discussed by [15], [16] and [17].

The problem is the lack of a conventional energy self-
sustaining system based on photovoltaic energy for
measurement systems of variables that pollute a river, a
specific case for the research project "Monitoring of
pollutants in the Burgay River"

For the reasons mentioned, it is necessary to implement an
isolated energy system for the generation of electrical energy
through the use of renewable energies such as photovoltaics,
to contribute to the aforementioned research project. Figure 1
reveals the need to be implemented during the development
of the investigation.
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Figure 1. Functional design of the energy isolated measurement
system

II. LOCATION OF THE RESEARCH

The Project is located at the Universidad Catolica de Cuenca
Sede Azogues, Canton Azogues-Ecuador, where there is a
physical space next to the laboratory of the Civil Engineering
career with the characteristics required for the assembly of
the equipment. It can be seen with its coordinates in Figure 2.
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Figure 2. Location of the project

1. METHODOLOGY

Type of research: For the development of the project, the
research methodology is followed based on a non-
experimental design of an analytical observational type,
following the phases shown in the flow chart (Figure 3)
below:
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Figure 3. Flowchart

A. Energy consumption calculation:

In this stage, the survey of the energy consumption of the
sensors and actuators that the measurement system has is
carried out through the documentary study of the technical
sheets of the equipment to determine the general consumption
demand of the system. Table 1 shows the partial and total
results.

Table 1. Energy consumption calculation
ENERGY CONSUMPTION CALCULATIONS

Week Dails
D e ey e WE s Wiy weighti:g cansum:tiun
(W) power(W) (h/day) (d/week) o (Wh/day)
1001 Transformer 1 0,6 0,6 24 7 1,00 14,40
1002 PH-sensor 1 0,05 0,05 24 7 1,00 1,20
1003 TDS Meter 1 0,03 0,03 24 7 1,00 0,72
1004 Temperature sensor 1 0,03 0,03 24 7 1,00 0,72
1005 Ultrasonic sensor 1 0,075 0,075 24 7 1,00 1,80
1006 Turbidity sensor 1 0,2 0,2 24 7 1,00 4,80
1007 Conductivity sensor 1 0,2 0,2 24 7 1,00 4,80
1008 LORA device 1 0,025 0,025 24 7 1,00 0,60
1009 Arduino 1 0,25 0,25 24 7 1,00 6,00
Total daily consumption (J) (Wh/day) 35,0
Simultaneity factor (K) (%) 100
Safety factor (L) (%) 15
Daily Simultaneous Consumption (M=JxK+(1+L/100)) (Wh/day) 403
Monthly Simultaneous Consumption (N=M*365/12) (kWh/mes) 1225,7
Annual Simultaneous Consumption (0=N*12) (kWh/afio) 14708,0
Power Installed (W) 1,46

B. Modeling of the photovoltaic system:

Within this phase, the modeling of the photovoltaic system
was carried out based on the energy requirements analyzed in
the previous point, to obtain results through simulations
giving different scenarios.

Considering the variables according to the table:

- Transformer power — Pr

- PH Sensor power — Ppy

- TDS Sensor power —  Prpg
- Temperature sensor power — Prom



- Ultrasonic Sensor power - Py
- Turbidity Sensor power — Pr,.
- LORA device power - P
- Arduino module power - P,

Then the installed power (P;) can be calculated using the
Equation (1)

P = Pr 4+ Ppy + Prps + Prem + Py + Pryr + PL + Py (1)
Substituting the data obtained from Table 1, we obtain,

P=146W

If the irradiance and temperature in the area of installation are
considered constant, and also that the load connected to the
panel varies, starting from the circuit shown in Figure 4, the
characteristic curves of current versus voltage (I-V) can be
modeled [18].
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Figure 4. Electrical model of the photovoltaic module.

The equations that govern the modeling of the electrical
circuit of the photovoltaic module are shown below:

q(V+RsI)
= Ly, —I (e aKTNs — 1) — @ )
sh

Where L, is the photogenerated current, I, is the reverse
saturation current of the diode, q is the charge of the electron
(1,6 x 10719 ), V is the voltaje of the solar cell, Kis the
constant of Boltzmann (1,38 x 10723 J/K) , T, is the
operating temperature of the cell, and A the ideality factor.

In addition, the photogenerated current is a function of solar
radiation and the temperature measured in the cell, the
equation can be generated:

G
1000

In = (Isc + Ki(T — 298.15)) (3)

The diode reverse saturation current is also a function of
temperature variation, as described by the following
equation:

_ Ige+K;(T—298.15)
Iy = q(V+RsD) “)
¢ aRTNs _1

Ln, Iy, Ng, Vi, In, T, a, K, q, G, Rs y Rgp designate,
respectively, the photocurrent, the reverse saturation current
of the diode, the number of cells in series, the voltage at the
terminals of the module, the ambient temperature in K, the
ideality factor, the charge of the electron, the Boltzmann
constant, the solar irradiation in W/mz, the resistance in
series and in derivation of the module.

Equation (2) is very important to know the power of the
photovoltaic panels emitted by the different voltage and
current values that make up the I-V curve. Equation (2) is
solved by iterative algorithms and using it to find the power
of the panels is a very complicated task. Reason why for our
case we will use the King model [19]for the development of
the model, which shows five essential points that must be
considered, which are found depending on the irradiance and
temperature of the cell, as shown in Figure 5.
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Figure 5. Curve I-V of a solar panel — model of King [19]

For our case that we are going to choose a Trimex Tesla M-
S36-53 panel, the data from its technical sheet is shown in
Figure 6.

Madel M-536-53 Manufacturer |Trimex Tesla

Fie name Trimex_MS3653,PAN Data source |Manufacturer

(7] Original PYsyst database Prod. from 1998 to 2000

The nominal power doesn't match the
Nom. Power 530 |wp  Tol -/+ [N [wa] % Vimpp*Impp data (discrepancy of 0.60%%).
(at5TC) This will distort the Performance Ratio result
Technology Si-mono | (PVsyst usually accepts up to 0.2%%)

or other —Model
Ref dit GRef wjme TRef oc @ || Main parameters
eference conditions ef |1000 jm ef |25 R shunt 2509
Short-circuit current Ic (3420 | A Open circuit Voc [21.50 | V. Rsh(G=0) 10000
Max Pawer Point Impp (3.100 | A Vmpp |17.20 |V R serie model 0.60Q
o R serie max, 0740
Temperature coefficient mulsc (2.7 mA/°C Nb cells 36 in series @ seric apparent 0880
) %/°C
or mulsc [0.080 f Model
| model result tool Gamma 1021
ToRef 0.43nA
Operating conditions Goper [1000 wimz Toper oc @ || e _72mvfeC
Max Power Point pmpp  53.4 W @ Temper. coeft.  -0,40 %/°C
Current  Impp  3.16 A Vokage vmpp 169 v
Short-circuit current s 3.42 A Open crcutt Voo 2L5V
Efficiency / Cels area 14.20 % /Modulearea 1174 %

Figure 6. Panel data Trimex Tesla M-S36-53.

And we simulate for different values of incidence irradiation
as shown in Figure 7. Considering a referential irradiance of
1000 W /m?,, we have that V,,,,, = 15.427 V ¢ I,,,,, = 3.1854
A, giving a power of 49.139 W. From the same way you can
get the power values for different irradiation values.
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Figure 8 simulates the power vs. voltage curve for the chosen

panel.
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Longitude -788.470°
Altitude 2445 m
Time Zone -5 GMT
Albedo 0.20

Table 2. Monthly weather data.

With the location data, the monthly meteo data is obtained,
shown in Table 2.

Values GlobH DiffH Temp Wind Vel
Month kWh/m? kWh/m? °C m/s
January 146.7 75.1 14.5 3.61
February 130.9 70.2 14.4 3.39
March 158.8 78.3 14.3 3.10
April 153.3 57.8 14.0 2.90
May 160.9 64.4 141 3.50
June 140.8 58.4 133 4.40
July 136.1 61.5 13.3 4.79
August 119.3 67.1 13.4 4.80
September 130.2 61.9 13.5 4.30
October 118.2 67.8 14.4 3.40
November 132.8 724 14.2 3.00
December 149.1 734 14.4 3.29
Year 1677.1 808.3 14.0 3.71
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Figure 8. Curve P-V of the panel Trimex Tesla M-S36-53

C. Solar System sizing and design

The sizing and design of the system is carried out using the

specialized PVsyst software,

based on the previous

parameters that adjust to the project requirements, such as:
energy demand, autonomy time, if it is isolated or connected
to the network, etc. For our specific case and according to the
needs of the project, the system that is adjusted is a "Typical
design of an independent system", which is shown in Figure

2. The project must be a system isolated from the grid

due to its location in the Burgay river basin since
there is no conventional electrical grid, and it also
leaves the possibility of changing its location if
necessary.

We define the orientation of the panels according to
the best annual performance to capture solar
radiation, resulting in a plane tilt of 10° and an
azimuth of 0°, these results can be seen in Figure 10.
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Figure 10. Orientation

The following are the points to follow to obtain the

components of the independent system using PVsyst:

1. The coordinates of the location where the project is
going to be implemented are taken, being these:

Site UCACUE-Azogues

Country Ecuador

Region South_America

Source Meteonorm 8.0 (2010-2014), Sat=100%

Latitude -27.527°

The parameter found in the consumption calculations
section refers to the installed power and leaves an
additional percentage for some energy requirement
in the future, which allows us to define in the PVsyst
the daily consumption for the year, considering that



the team will work 24 hours a day and 7 days a week.
This information can be reviewed in Figure 11.

Definition of daily household cons

Consumption | Hourly distrbution

Daily consumptions.

umptions for the year.

D. Simulation and results of the solar system:

The simulation is carried out based on the information
entered in the PVsyst according to the needs described above.
Figure 14 shows the normalized production to have during
the year. Having an available energy production of 62.06
kWh/year, of which 43.80 kWh/year will be used, leaving an
excess of 16.54 kWh/year.
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Figure 11. Definition of daily consumption for the year

5.

As already indicated, the system must be
continuously powered by its constant monitoring
conditions and it is thus necessary to have a storage
that allows me to have an autonomy of at least 1 day.
In addition, at this point it is necessary to indicate
the voltage of the battery to be used. This data is
considered and dependent on the power supply of
the electronic equipment of the monitoring system,
being 12 V. In the same way, the storage shows
(Figure 12) the details of the information load in the
PVsyst.
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Figure 12. Definition of daily consumption for the year

We select the photovoltaic module and the
controller, the ones that best fit our requirements are
shown in Figure 13.
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Figure 14. Normalized production (per installed kWp)

Figure 15 shows the performance ratio (PR) for the year
month by month. Understanding that the months of August
and October reach their highest peaks in PR. In general, a

performance ratio of 49.18% is considered.
| I I ! I I | I [ 1

12 . PR: Performance Ratio (Yf/Yr):  0.492
11

SF: Solar Fraction (ESol f ELoad) :  1.000

Performance Ratio PR
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Figure 15. Performance ratio (PR)

The balances and main results are indicated in Table 3, both
on a monthly basis and the consolidated values for the year.

Table 3. Balance sheets and main results

GlobHor GlobEff  E_Avail EUnused E_User E_Load

kWh/m?  kWh/m? kWh kWh kWh kWh
January 146,7 132,60 5,04 1,18 3,72 3,72
February 130,9 121,70 4,66 1,14 3,36 3,36
March 158,8 153,20 5,86 1,85 3,72 3,72
April 153,3 154,10 5,87 2,18 3,60 3,60
May 160,9 166,00 6,36 2,46 3,72 3,72
June 140,8 147,30 5,67 2,12 3,60 3,60
July 136,1 140,70 5,38 1,34 3,72 3,72
August 119,3 119,20 4,53 0,75 3,72 3,72
September  130,2 126,90 4,81 1,02 3,60 3,60
October 118,2 111,50 4,20 0,74 3,72 3,72
November 132,8 120,90 4,57 0,53 3,60 3,60
December 149,1 133,70 5,12 1,23 3,72 3,72
Year 1.677,10 1.627,80 62,06 16,54 43,80 43,80

Figure 13. Selection of PV panel and controller



Where,

GlobHor Glabal horizontal irradiation
GlobEff Global Cash

E_ Avail Solar energy available
EUnused Energy not used (battery full)
E User Delivered to the user

E Load Energy need of the user (Load)

Finally, the data obtained in the simulation of the solar system
for the losses due to the different factors indicated in Figure
shown.
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Figure 16. Loss diagram

IV. CONCLUSIONS

The results of the simulation with the data required to meet
the energy needs of the system under different changes in
solar radiation and panel temperature were presented as
expected by choosing the Trimex Tesla M-S36-53
photovoltaic panel. In the system simulation, the power
measurement was determined by taking 60 samples.

Analyzing the solar panel through its mathematical model
and understanding its electrical diagram leads us to
understand that through its current-voltage and power-
voltage graphs, it facilitates the choice of parameters and it
was also possible to verify the technical data provided by the
manufacturer. at their points of operation. In Figure 6 it was
possible to obtain the maximum tension ranges in order to
obtain the best performance.

The objective of the research work was to compare the results
obtained to analyze the best option according to the needs
raised to supply energy to the pollutant measurement system.

Using specialized software such as PVsyst facilitates the
calculations for a complete system connected to the grid or
autonomous as in our case, and above all it generates
simulation alternatives for different solar panels, controllers,
batteries.

With the results obtained in the simulations, it can be
indicated that it is feasible to implement the isolated
photovoltaic system, in addition to the geographical location
that presents good solar radiation conditions, the components
have a duration between 8 and 10 years (considering the
batteries as the most vulnerable). to a change in the period
described), granting energy independence to the school
during that time.
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