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Abstract—To maintain the quality of energy supply and
the correct operation of equipments, the electrical frequency
is a parameter of high importance in Electric Power Systems.
This work presents a digital frequency estimation technique
based on network voltage waveforms analysis that are de-
composed into their α and β components using the Clarke
Transform. Second order linear prediction is used in order to
predict the future values of these components. In addition, a
logic to reduce the prediction error is applied to improve the
estimation response. The network frequency is then estimated
as a function of the angle resulting from the multiplication
between the complex signal and the signal given by the
prediction of α and β components. The technique were tested
for signals with ramped, exponential and damped sinusoidal
frequency variations, as well as in the presence of White
Gaussian Noise, and evaluated in terms of convergence time,
minimum and maximum errors before and after convergence,
showing that this innovative method has great precision and
robustness in different simulation situations.

Index Terms—digital frequency estimation, protection of
electrical power systems, Clarke’s transform, linear predic-
tion, performance indices.

I. INTRODUCTION

The digital estimation of electrical frequency is of great
importance for Electric Power Systems (EPSs) since the
equipment can be damaged when the frequency variation
limits are exceeded, impairing the supply and quality
of electrical energy. So, the actuation of protection and
control devices are quite important for sudden variations
in the fundamental frequency, which can lead the system to
operational restrictions, in order to maintain the acceptable
frequency levels for the continuous energy supply.

In EPS, the fundamental frequency is related to the
quality of electrical energy, where, ideally, this has con-
stant values of frequency and effective voltage. In steady
state, frequency oscillations are allowed, but with small
amplitudes. Frequencies outside the limitations imposed
for each system can indicate the occurrence of faults or
overloads as mentioned in [1].

Thus, damage to equipment connected to the electrical
network, such as generators, transformers, motors, capac-
itor banks and transmission lines, are directly related to
frequency variations, and affect the stability of the system
[2].

In these circumstances, it is necessary to accurately
estimate the electrical frequency, to mitigate damage to
the system through protection actuation, and to save the
quality of the supplied energy, through control and opera-
tional actions. In this context, several methodologies have

been presented in the specialized literature to estimate the
electrical frequency, such as those proposed by [1] to [16].
However, no method proposed so far is able to guarantee
accuracy in frequency estimation in all operational condi-
tions.

This work presents a new digital frequency estimation
method, which is based on the prediction of the α and
β components of the network voltage signals, using their
linear predictions of 2nd order. The proposed technique
was tested for cases involving ramped, exponential and
damped sinusoidal frequency variations, as well as signals
corrupted by White Gaussian Noise (WGN), presenting
great precision and robustness for frequency estimation,
reaching the convergence criterion in all analyzed cases.

II. PROPOSED TECHNIQUE FOR FREQUENCY
ESTIMATION

To analyze the performance of the Frequency Estima-
tion method via Linear Prediction of Clarke Components
(LPCC), the results were evaluated in terms of perfor-
mance indices, such as convergence time, convergence
interval, minimum, and maximum errors before and after
convergence.

The LPCC is based on obtaining the Clarke Components
of three-phase voltage signals, through the αβ Transform,
according to (1), where n represents the actual sample.
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The resulting complex signal is given by (2).

u(k) = vα(k) + jvβ(k) (2)

The method proposed here uses linear prediction to
estimate the future values of the α and β signals.

Thus, according to [18], the linear prediction model
recursively represents the time series of signal samples
over a time interval, as follows in (3).

v(k) = c1 · v(k − 1) + · · ·+ ci · V (k − i) (3)

Where k − 1, . . . , k − i indicate past samples of
the v signal. Also, c1, . . . , ci are the linear prediction
coefficients, i is the order of the model. In this study the
2nd order model was used as follows.
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Resulting in Equation (6).

v(k+1) = c1 ·v(k)+c2 ·v(k−1)+c3 ·v(k−2)+c4 ·v(k−3)
(6)

Where v(k + 1 ) indicates the future estimated value of
vα or vβ . After obtaining the future values of the vα and
vβ through the linear prediction, these are assigned to the
value of the estimated complex signal (uest ), according to
(7).

uest(k + 1) = vαest
(k + 1) + jvβest

(k + 1) (7)

With the values u(k) and uest(k + 1 ), γ(k) is calculated
according to Equation (8).

γ(k) = uest(k + 1) · u(k)∗ (8)

In (8), u(k)∗ represents the complex conjugate of u(k).
Finally, the frequency estimation of the system is given

according to (9).

fest(k) =
fs
2π

· tan−1

{
Im[γ(k)]

Re[γ(k)]

}
(9)

In (9), Re and Im represent, respectively, the real and
imaginary parts of γ(k) and fs is the sampling frequency.
The flowchart of this methodology can be seen in Figure
1.

III. PERFORMANCE INDICES

In order to validate the quality of the frequency estima-
tion of the proposed methodology (LPCC), the following
performance indices were analyzed: convergence time,
convergence interval, maximum error before convergence,
minimum error before convergence, maximum error after
convergence, and minimum error after convergence.

A. Convergence Time (CT)

The Convergence Time is the instant in which the
estimation absolute error is less than 0.05 Hz during 3
cycles after the first estimation that fulfils the convergence
condition. When an estimation error is less than 0.05 Hz,
the algorithm saves the respective instant and counts the
number of estimations that fulfil the convergence criterion.
If this count reaches a number equivalent to 3 cycles of
samples, the saved instant is considered the convergence
instant. If the absolute error of the estimation is greater
than 0.05 Hz before the counter reaches three cycles, the
saved value is deleted and a new instant will be searched if
the convergence condition is satisfied again. Furthermore,
if the absolute error does not meet the established criterion,
the method response is considered non-convergent.

Fig. 1. Flowchart of the Frequency Estimation method via Linear
Prediction of Clarke Components (LPCC).

B. Convergence Interval (CI)

The Convergence Interval is the interval between the
Convergence Time (CT) and the frequency Variation In-
stant (VI), as indicated in (10).

CI = CT − V I (10)

For protection purposes, it is desirable that the fre-
quency estimators response has the shortest possible con-
vergence interval. Thus, the smaller the CI, the better the
frequency estimator performance according to [4].

C. Absolute Error

It is given by the difference between the estimated
frequency (fest ) for the actual sample (k ) and the reference
frequency for the same instant (fref ), according to (11).

error(k) = |fest(k)− fref (k)| (11)

From the absolute error, the maximum and minimum
values of the frequency estimator response absolute errors
are determined, before and after their respective conver-
gence, determining the following performance indices:
Maximum Absolute Error Before Convergence (AEBC-
max), Minimum Absolute Error Before Convergence (AE-
BCmin), Maximum Absolute Error After Convergence
(AEACmax) and Minimum Absolute Error After Con-
vergence (AEACmin). To prevent an improper operation
of the frequency relay during a frequency transient, it is



desirable that AEBC to be as small as possible according
to [8]. Furthermore, it is desirable that the frequency esti-
mation error be as small as possible during the entire signal
processing, since this parameter indicates the accuracy
of the method. Lower estimation errors indicates better
performance.

IV. RESULTS

The proposed frequency estimator was tested for com-
putationally generated signals, which simulate different
frequency variations. In all cases, the fundamental fre-
quency was assumed as 60 Hz, being this the initial
frequency. The amplitude of all signals was defined as 1
p.u. Also, for ramped or exponentially frequency variations
the deviation begins at 0.5 second, while for the cases
with damped sinusoidal frequency variation it begins at
0.2 second. All cases were simulated for 16, 32, 64, 96,
128 and 256 samples per cycle.

The Figures present the estimated frequency for the
sampling rate of 15,360 Hz (256 samples/cycle at 60 Hz),
while the Tables in the Appendix present the performance
indices for all analyzed sampling rates. It is noteworthy
that for all sampling rates the results were satisfactory.

All the voltage signals were generated according to (12)
to (14), where f (k) represents the frequency signal which
has a particular equation for each type of deviation [17],
as presented in the following sections.

vA(k) = A · cos[2π · f(k) · t(k)] (12)

vB(k) = A · cos
[
2π · f(k) · t(k)−

(
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3

)]
(13)

vC(k) = A · cos
[
2π · f(k) · t(k) +

(
2π

3

)]
(14)

A. Signals with Ramped Frequency Variation

For this type of variation, frequency signal deviation is
given by (15).

f(k) = f0 +∆f · t(k) (15)

In (15), f0 represents the initial frequency. Fig. 2 shows
the good performance of the proposed method for a signal
with ramped frequency variation from 60 to 65 Hz. Table I,
in the Appendix, shows the performance indices obtained
by sampling rates from 16 to 256 samples/cycle, where
the best results are highlighted in green and the worst
in red. In this case, 256 samples/cycle presented the best
results for CT and CI performance indices. The best
values for AEBCmax and AEBCmin were found with
16 to 128 samples/cycle while the worst were obtained
by 256 samples/cycle. For AEBCmax and AEBCmin, the
best results were found using 256 and 96 samples/cycle,
respectively, while the worst results were obtained with 32
and 16 samples/cycle.
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Fig. 2. (a) Performance of 2nd order linear prediction frequency
estimation for ramped frequency variation. (b) Estimation error.

B. Signals with Exponentially Frequency Variation

For this type of variation, in (12) to (14) the frequency
exponentially varies according to (16) from 60 Hz to
higher or lower values.

f(k) = f0 +∆f ·
(
1− e−

t(k)
τ

)
(16)

In (16), f0 represents the initial frequency, ∆f is the
frequency variation amplitude and τ is the time constant
of the exponential function. Signals were generated for
different values of ∆f and τ .

Fig. 3 presents the response for a signal with expo-
nential frequency variation generated for ∆f = -5 Hz and
τ = 0.05 s using the proposed technique. The performance
indices obtained from each sample rate analyzed are
presented in Table II of the Appendix.

In this case, the sampling rate of 256 samples/cycle
presented the best results for the CT, CI and AEBCmax in-
dices, while for the AEBCmin indices the best results were
presented using 16 to 128 samples/cycle. For AEACmax
and AEACmin the best results were obtained with 256
samples/cycle.

C. Signals with Damped Sinusoidal Frequency Variation

These signals were generated using to (12) to (14),
where the frequency during the transient was given by
(17).

f(k) = f0 +∆f sin ·
(
ωf · t(k) · e−

t(k)
τ

)
(17)

In (17), f0 represents the initial frequency, ∆f is the
amplitude of the change, ωf is the angular frequency of
the frequency change, and τ is the time constant of the
exponential function.

Fig. 4 presents the results for the estimated frequency
using linear prediction for the processing of voltage signals
with damped frequency variation from 60 Hz to 55 Hz,
generated with ∆f= 5 Hz, ωf = 10π, and τ= 0.15 s.



0.49 0.5 0.51 0.52 0.53 0.54 0.55

Time (s)
(a)

54

55

56

57

58

59

60

61

F
re

qu
en

cy
 (

H
z)

f
est

f
ref

0.49 0.5 0.51 0.52 0.53 0.54 0.55

Time (s)
(b)

-0.04

-0.02

0

0.02

0.04

E
rr

or
 (

H
z)

error

Fig. 3. (a) Performance of 2nd order linear prediction frequency
estimation for exponentially frequency variation. (b) Estimation error.

For this case, the best values of the CT, CI and AEBC-
max indices were verified using 256 samples/cycle, while
the worst was found with 16 and 32 samples/cycle. For
the AEBCmin, the best response was verified using 16
samples/cycle and the worst with 128 samples/cycle. For
the AEACmax and AEACmin indices, the sampling of
256 samples/cycle had the best result, while the worst was
verified using 16 samples/cycle. The performance indices
obtained with each analyzed sampling rates are presented
in Table III of the Appendix.
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Fig. 4. (a) Performance of 2nd order linear prediction frequency
estimation for damped frequency variation. (b) Estimation error.

D. Signals Corrupted by WGN

The method performance was tested with the presence
of WGN in the voltage signals. An average filter with one
cycle moving window was used for a signal corrupted by
40 dB Signal to Noise Ratio (SNR). For this case, the

results are shown in Fig. 5 using a sampling rate of 256
samples/cycle.
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Fig. 5. (a) Frequency estimation using linear prediction for White
Gaussian Noise of 40dB in the voltage signals, and the frequency
estimation after the filtering. (b) Estimation error.

In this case, the best responses were observed for
the rates of 96 to 128 samples/cycle. However, for 16
samples/cycle CT, CI and AEBCmax best responses were
verified among all the sampling rates tested. The better
value of AEBCmin (8.64601E-07 Hz) was obtained using
128 samples/cycle. For AEACmax, the best performance
was verified at 256 samples/cycle, wich reaches the value
of 4.49924E-03 Hz. Best AEACmin was obtained with 96
samples/cycle (1.18444E-08 Hz). The performance indices
obtained by each analyzed sampling rates are presented in
Table IV of the Appendix.

V. CONCLUSIONS

This work presented a new method applicable to digital
relays, which aims to estimate the electrical frequency
on EPS. Such technique was computationally evaluated in
order to analyze its performance indices in different situ-
ations in which the electrical power system is susceptible.

Finally, it was concluded that the new method has
an excellent performance, presenting acceptable values of
performance indices even for the cases where the signals
are corrupted by WGN. So, the proposed new technique
can be used as a powerful tool for frequency estimation
task.
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VI. APPENDIX

TABLE I
PERFORMANCE INDICES FOR A RAMP FREQUENCY VARIATION (60

HZ TO 65 HZ).

Samples/Cycle CT CI AEBCmax AEBCmin AEACmax AEACmin
16 5.51042E-01 5.10417E-02 1.00000E-02 0.00000E+00 4.48250E-03 4.18264E-03
32 5.50521E-01 5.05208E-02 1.00000E-02 0.00000E+00 1.16243E-02 6.57963E-12
64 5.50260E-01 5.02604E-02 1.00000E-02 0.00000E+00 1.04409E-02 2.85638E-12
96 5.50174E-01 5.01736E-02 1.00000E-02 7.10543E-15 1.01988E-02 0.00000E+00
128 5.50130E-01 5.01302E-02 1.00000E-02 0.00000E+00 1.01125E-02 7.57439E-12
256 5.50065E-01 5.00651E-02 1.00283E-02 2.70717E-12 8.43272E-11 7.33280E-11

TABLE II
PERFORMANCE INDICES FOR AN EXPONENTIAL FREQUENCY
VARIATION (60 HZ TO 55 HZ, ∆f =-5 HZ AND τ = 0.05 S).

Samples/Cycle CT CI AEBCmax AEBCmin AEACmax AEACmin
16 5.73958E-01 7.39583E-02 4.94625E-01 0.00000E+00 1.54240E-04 1.56319E-13
32 5.54688E-01 5.46875E-02 2.53751E-01 0.00000E+00 1.47219E-04 2.13163E-14
64 5.50521E-01 5.05208E-02 1.28528E-01 0.00000E+00 2.77049E-05 8.52651E-14
96 5.50347E-01 5.03472E-02 8.60564E-02 7.10543E-15 8.25993E-06 3.55271E-14
128 5.50260E-01 5.02604E-02 6.47596E-02 0.00000E+00 3.48985E-06 2.84217E-14
256 5.50130E-01 5.01302E-02 3.27072E-02 5.11591E-12 4.36519E-07 0.00000E+00

TABLE III
PERFORMANCE INDICES FOR A DAMPED FREQUENCY VARIATION

(60 HZ TO 55 HZ, ∆f =5 HZ, ωf = 10π AND τ = 0.15s).

Samples/Cycle CT CI AEBCmax AEBCmin AEACmax AEACmin
16 2.51042E-01 5.10417E-02 1.04855E-01 0.00000E+00 1.00414E-02 1.95602E-06
32 2.51042E-01 5.10417E-02 6.16483E-02 5.31486E-12 1.69310E-03 9.21894E-08
64 2.50260E-01 5.02604E-02 3.19975E-02 2.50608E-11 2.26461E-04 3.54979E-09
96 2.50174E-01 5.01736E-02 2.14693E-02 3.60103E-11 6.79382E-05 1.22306E-10
128 2.50130E-01 5.01302E-02 1.61353E-02 9.24771E-11 2.87829E-05 2.09099E-10
256 2.50065E-01 5.00651E-02 8.08321E-03 9.12692E-11 3.61272E-06 8.41993E-12

TABLE IV
PERFORMANCE INDICES FOR WHITE GAUSSIAN NOISE IN THE

FREQUENCY.

Samples/Cycle CT CI AEBCmax AEBCmin AEACmax AEACmin
16 3.67708E-01 3.67708E-01 3.72712E-02 1.56678E-04 3.71901E-02 2.99770E-05
32 3.68229E-01 3.68229E-01 1.80397E-01 1.39790E-04 1.91593E-02 4.17666E-07
64 3.68750E-01 3.68750E-01 2.97006E-01 3.94093E-06 8.64615E-03 2.58621E-06
96 3.68924E-01 3.68924E-01 3.44610E-01 9.79302E-07 7.42733E-03 1.18444E-08
128 3.69010E-01 3.69010E-01 3.73025E-01 8.64601E-07 7.43668E-03 1.08747E-06
256 3.69206E-01 3.69206E-01 4.23059E-01 1.57916E-06 4.49924E-03 8.91703E-08
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