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Abstract—Wind turbine power curves have great 

importance for power grid planning, wind energy assessment, 

and condition monitoring and troubleshooting of wind 

turbines. However, it is difficult to construct accurate wind 

turbine power curves due to the presence of outlier data points. 

This study compares the outlier detection approaches in the 

literature from different perspectives, i.e., wind farm/turbine 

location, rated wind power, data recording period, data 

recording interval and outlier identification performance. In 

consequence, many reasonable findings have been obtained 

and thus, several research directions have been indicated for 
wind turbine power curves. 
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I. INTRODUCTION  

Hydropower, solar energy, wind energy, bio-energy and 
geothermal energy are the primary renewable energy sources 
in the world [1]. The main purpose of using them is to reduce 
fossil fuel consumption and to provide a sustainable life [2, 
3]. Unlike traditional energy sources, renewable ones are 
reliable and economic, and have not any negative impacts on 
the nature [4, 5]. In particular, wind energy has played a 
more important role in mitigating the energy crisis over the 
past decades [6]. The total global wind power capacity 
neared 743 GW in 2020 although it was 650 GW in 2019 [7].  

In the growing wind industry, wind turbine power curves 
have great value in evaluating the operating state and 
performance of wind turbines [8]. According to Fig. 1, there 
are four main regions in a typical power curve of a pitch-
regulated wind turbine [9, 10]. When 𝑣 is less than 𝑣𝑐𝑢𝑡−𝑖𝑛, 
the output power is zero (Region 1). When 𝑣 is greater than 
𝑣𝑐𝑢𝑡−𝑖𝑛  and less than 𝑣𝑟𝑎𝑡𝑒𝑑 , the output power increases 
rapidly (Region 2). When 𝑣 is greater than 𝑣𝑟𝑎𝑡𝑒𝑑  and less 
than 𝑣𝑐𝑢𝑡−𝑜𝑓𝑓 , the output power is constant (Region 3). 

When 𝑣  is greater than 𝑣𝑐𝑢𝑡−𝑜𝑓𝑓 , the wind turbine is shut 

down  to prevent damage from high wind speeds (Region 4). 

 

Fig. 1. Operating regions of a wind turbine power curve [9] 

Despite of their effectiveness in the condition monitoring, 
wind turbine power curves include the plenty of outliers in 
the SCADA data and it is needed to detect and clean them 
[11]. As shown in Fig. 2, this abnormal data is categorized 
into three types as stacked outliers, scattered outliers and 
negative outliers [12, 13]. Type I data points are the negative 
outliers caused by wind curtailment, wind turbine failures 
and unplanned maintenance. Type II data points are the 
scattered outliers caused by uncontrolled coincidental 
factors, sensor noises and faults. Type III data points are the 
stacked outliers caused by communication failures and wind 
curtailment commands. 

 

Fig. 2. Outlier types in a wind turbine power curve [12] 

In this regard, this study briefly examines the outlier 
detection approaches used for wind turbine power curves. 
The current status of the corresponding literature has been 
summarized and the available problems needed to be worked 
out have been evaluated. In addition, many useful 
recommendations have been made for the characterization of 
wind turbine power curves (WTPCs).  

II. OUTLIER DETECTION APPROACHES FOR WTPCS 

 The employed approaches have been compared in terms 
of the location and installed power of wind turbine/farm, the 
recording period and interval of total dataset, and the 
accuracy results. Table I presents this detailed comparison. 
For instance, in [18], a wind turbine, which is located in UK 
and has the installed power of 2 MW, was utilized. The total 
dataset was collected at 10-min intervals over the period of 2 
months. Gaussian mixture copula model, Frank copula 
model and Gaussian mixture model were used to clean the 
outliers. Frank copula model provided better results than 
Gaussian mixture model in terms of Bayesian information 
criterion (BIC). Their BIC values were obtained as 112415 
and 114993, respectively. Gaussian mixture copula model 
outperformed these two algorithms with the BIC value of 
110597.  

 



TABLE I.     COMPARISON OF ABNORMALITY DETECTION METHODS FOR WIND TURBINE POWER CURVES 

Ref. 

Wind Turbine / Farm Total Dataset 

Employed Models Results 
Location Power 

Period /  

Observations 

Recording 

Interval 

[14] China 

25.5 MW 

(WF2) 

30 MW 

(WF1) 

 

30723 

(Avg.) 

91402 

(Avg.) 

10-min 

k-means algorithm AR: 0.92 

Local outlier factor algorithm AR: 0.88 

Combination of change point grouping 

algorithm and quartile algorithm 
AR: 0.92 

Adaptive confidence boundary modeling AR: 0.81 

Image-based detection and cleaning algorithm AR: 0.89 

Image thresholding based on minimization of 

dissimilarity-and-uncertainty-based energy 
AR: 0.97 

[15] China 

3 MW 

(WF1) 

2 MW 

(WF2) 

13.5 MW 

(WF3) 

9 days 

(WF1) 

1 year 

(WF2) 

~3 months 

(WF3) 

0.5-sec 

(WF1) 

10-min 

(WF2) 

1-min 

(WF3) 

Intuitive rules method based on mechanism 

analysis 
DDR: 16.71 - 45.01% 

Local outlier factor algorithm DDR: 14.99 - 15.01% 

Partitional clustering-based algorithm DDR: 3.74 - 30.57% 

Change point grouping-quartile algorithm DDR: 8.68 - 22.53% 

Image-based algorithm DDR: 12.95 - 36.53% 

[12] China 

25.5 MW 

(WF1) 

30 MW 

(WF2) 

8 months 

(WF1) 

19 months 

(WF2) 

10-min 

Image-based data cleaning algorithm 
DDR: 8.93 - 22.33% (WF1) 

DDR: 8.28 - 24.92% (WF2) 

Local outlier factor algorithm 
DDR: 9.89 - 9.99% (WF1) 

DDR: 9.91 - 9.97% (WF2) 

Combination of change point grouping 

algorithm and quartile algorithm 

DDR: 5.12 - 13.32% (WF1) 

DDR: 5.78 - 13.01% (WF2) 

k-means algorithm 
DDR: 10.17 - % 17.73(WF1) 

DDR: 3.73 - 7.52% (WF2) 

[16] China 

30 MW 

(WF1) 

25.5 MW 

(WF2) 

30723 

(Avg.) 

91402 

(Avg.) 

10-min 

Image processing 
DDR: 38.10% (WF1) 

DDR: 35.88% (WF2) 

Mathematical morphology operation 
DDR: 14.44% (WF1) 

DDR: 16.06% (WF2) 

Local outlier factor algorithm 
DDR: 9.94% (WF1) 

DDR: 9.93% (WF2) 

[17] China 2 MW 12 months 10-min 

Change point grouping-quartile algorithm DDR: 21.04% (39.59s) 

Quartile-change point grouping algorithm DDR: 27.10% (33.06s) 

Local outlier factor algorithm DDR: 21.04% (15min27s) 

[18] UK 2 MW 2 months 10-min 

Gaussian mixture copula model BIC: 110597 

Frank copula model BIC: 112415 

Gaussian mixture model BIC: 114993 

[19] China 1.5 MW 3 months 5-min 
Self-organizing maps ER: 22% 

Linear mixture self-organizing maps ER: 15% 

[20] China 6 MW ~3 months 10-min 

Combination of stacked denoising auto-encoder 

and density-grid-based clustering method 
CCR: ≅98% 

Local outlier factor algorithm CCR: ≅86% 

[21] 
Scotland, 

UK 
7 MW 1 year 1-sec 

Elliptic envelope method 
Isolation forest method 

Isolation forest method 

[22] Chile 2 MW 52560 10-min Gaussian process DDR: 8.27% 

[23] China 
48 MW 

12 months 10-min 

Combination of intuitive rules and density-

based spatial clustering of applications with 

noise 

PNOD: 38.94 - 59.32% 

49.5 MW PNOD: 40.97 - 64.03% 

[24] China 3.5 GW 15 months 15-min 
Combination of probabilistic wind farm power 

curve and outlier types 
ODP: 10.21% 

[25] China 40 MW 15000 10-min 
Combination of quartile method and density-

based clustering method 
DDR: 17.88% 

[26] China 150 MW 13811 15-min Local outlier factor algorithm ODP: 94.45% 

[27] Denmark 2 MW 8784 10-min 

Combination of k-means, k-means++, k-

medoids and k-medoids++ algorithms with 

Mahalanobis distance and chi-square 

cumulative distribution 

NIO: 1150 (k-means) 

NIO: 1149 (k-means++) 

NIO: 717 (k-medoids) 

NIO: 539 (k-medoids++) 

[28] Iran 1.5 MW 1954 5-min Modified hyperbolic tangent model NIO: 258 

[29] Portugal 1.8 MW 50444 10-min 
Combination of Betz limit, quartile criteria and 

histogram analysis 
NIO: 3009 

[30] 
Scotland, 

UK 
7 MW 744 1-h Isolation forest method CR: 14% 

[31] 
Scotland, 

UK 
7 MW 9 months 10-min Isolation forest method CR: 4% 

[32] China 1.5 MW 3 months 10-min 

Combination of genetic algorithm based on 

partial least squares regression and back 

propagation neural networks 

- 

[33] China 24 MW 497838 10-min 
Combination of k-means clustering, Tukey’s 

method and threshold limit 
- 

[34] Ecuador 16.5 MW 1 year 10-min Robust confidence band - 

[35] Spain 17.56 MW 5.5 days 10-min 
Combination of automatic clustering and T
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statistic 
- 



TABLE I.     COMPARISON OF ABNORMALITY DETECTION METHODS FOR WIND TURBINE POWER CURVES (CONT.) 

Ref. 

Wind Turbine / Farm Total Dataset 

Employed Models Results 
Location Power 

Period / 

Observations 

Recording 

Interval 

[11] USA 100 MW 2 months 10-sec 
Combination of T

2
 chart, generalized variance 

chart and individual-moving range chart 
- 

 [36] - 1.5 MW 12 months 5-min Piece-wise linear model NIO: 2260 

[37] UK - 125 weeks 10-min 

Extreme function theory  CER: 0.125 

Point-wise Gaussian process CER: 0.13 

Gaussian process with Monte Carlo threshold CER: 0.32 

Gaussian process with differential evolution 

threshold   
CER: 0.37 

Multivariate extreme value theory CER: 0.23 

Auto-associative neural networks CER: 0.17 

[38] 

North 

Sea, UK 

(WF1) 

Northern 

Europe 

(WF2) 

- 

24 months 

(WF1) 

18 months 

(WF2) 

10-min 

Isolation forest method ODP: 27.47% 

Gaussian mixture modeling ODP: 15.13% 

Local outlier factor algorithm ODP: 11.74% 

k nearest neighbours ODP: 7.99% 

[39] China - 

3 months 

(WF1) 

5 months 

(WF2) 

9 months 

(WF3) 

10-min 

Gaussian process  

5 parameter-logistic 

function based on  

quantile regression 

Density-based spatial clustering of applications 

with noise 

Logistic functions based on quantile regression 

[40] Spain - 6 months 10-min 
Binned linear least median of squares method ODP: 96.01% 

Exponential least median of squares method ODP: 96.39% 

[41] China - 

8 months 

(WF1) 

19 months 

(WF2) 

10-min 
Combination of color space conversion and 

image feature detection 
DDR: 8 - 14% 

[42] 
Northern 

China 
- 1 year 15-min Iterative regression process RER: 40.74% 

[43] 
South 

America 
- 2 years 10-min 

Combination of data binning and Mahalanobis 

distance 
DDR: ~5-6% 

[44] 
Southern 

Denmark 
- 2 months 10-min 

Combination of k-means algorithm, 

Mahalanobis distance and heuristic hard 

threshold 

MR: %16 

[45] USA - 4347 10-min 
Combination of residual theory and control 

chart approaches 
NIO: 156 

[46] 
North 

China 
1.5 MW - - 

Combination of mechanism cleaning, Gaussian 

mixture model and optimized multidimensional 

quartile method 

PCC: 0.9721 

[47] - - 1 year 10-min Median statistics 

NIO: 15214 (WT1) 

NIO: 14871 (WT2) 

NIO: 17336 (WT3) 

NIO: 16046 (WT4) 

[10] China - 

5500 (WT1) 

6500 (WT2) 

7500 (WT3) 

6000 (WT4) 

- 
Combination of fuzzy c-means clustering and 

Mahalanobis distance 
- 

[48] - 25.5 MW - - 

Mathematical morphology operation DDR: 8.93 - 22.33%  

Local outlier factor algorithm DDR: 9.89 - 9.99% 

Combination of change point grouping 

algorithm and quartile algorithm  
DDR: 5.12 - 13.32% 

k-means algorithm DDR: 10.17 - 17.73% 

Image thresholding DDR: 11.62 - 48.31% 

[49] - - 2 years 10-min 
Density based spatial clustering of applications 

with noise 
- 

[50] Spain - - - Least median squares method - 
Abbreviations: AR (Accuracy Rate), AVG (Average), BIC (Bayesian Information Criterion), CR (Contamination Ratio), CCR (Correct Classification Rate), CER 

(Classification Error Rate), DDR (Data Deletion Rate), ER (Error Rate), MR (Misclassification Rate), NIO (Number of Identified Outliers), ODP (Outliers Detection 

Percentage), PCC: Pearson Coefficient, PNOD (Proportion of Normal Operational Data), RER (Relative Error Reduction), WF (Wind Farm), WT (Wind Turbine). 
 

 In Table I, on the basis of power plant types, wind farm-
based ones enable to identify a greater number of outlier 
types than wind turbine-based ones. In case of considering 
the total dataset characteristics, there are different recording 
periods (24 months, 12 months, 8 months, 3 months, 2 
months, etc.) along with different recording intervals (1-h, 
15-min, 10-min, 5-min, 1-min, 1-sec, etc.). At least, a dataset 
recorded at 10-min intervals over a 12-month period should 
be used to include the seasonal effects. Within the employed 

models, local outlier factor (LOF) algorithm, Gaussian 
process-based (GPB) methods, image processing-based 
(IPB) methods and k-means algorithm are the commonly-
used ones. Change point grouping-quartile (CPQ) algorithm, 
Mahalanobis distance (MD) and isolation forest (IF) method 
follow them. The outlier detection performance of all these 
models should be extensively compared in future studies. In 
the presentation of results, data deletion rate is the mostly-
utilized measure. Number of identified outliers and outliers 



detection percentage are also frequently used. All of these 
measures should be employed in each future study for easy-
to-comparison results. Lastly, any missing data related to the 
location and installed power of wind turbine/farm, the 
recording period and interval of total dataset and the 
accuracy results should be avoided.  

III. CONCLUSIONS 

The reliability of wind turbine power curves is adversely 
affected from the abnormalities in the SCADA data. Such 
abnormal data is required to be identified for the proper 
reflection of power generation performance of wind 
farms/turbines. In this study, a detailed comparison of outlier 
detection approaches in the literature has been conducted for 
discussing the cons of current studies and the pros of future 
studies. As a crucial result of this comparison, the outlier 
identification performance of LOF, GPB, IPB, k-means, 
CPQ, MD and IF methods is needed to be evaluated in terms 
of the measures of DDR, NIO and ODP. In addition, 
different combinations of these methods can also be created 
for novel hybrid models. In such benchmark studies, the use 
of raw power curve data collected from a wind farm at 10-
min intervals over a year will be beneficial to build the 
models that are more sensitive to the outliers. 
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