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Abstract— The stochastic charging behaviors of Electric 

Vehicle (EV) users illustrate the negative effects of bulk 

charging during peak hours on the grid. To overcome this 

problem, the bulk EV charging demand forecasting approach is 

investigated using historical EV charge demand dataset and EV 

driver mobility statictics in this paper. In this model, a Monte 

Carlo Simulation (MCS) is perfomed that considers the 

charging behavior of EV users for the generation of EV 

charging times. Moreover, the EV charging times are combined 

with the bulk EV demand hybrid forecasting model using 

decomposition and deep learning time series method. In first 

stage,  the EV demand time series dataset are divided to improve 

the model performance by empirical mode decomposition 

(EMD). Then, all decomposed signals are forecasted separately 

using the Bayesian optimized Long Short-Term Memory LSTM 

network (BO-LSTM). Finally, to evaluate the model 

perfomance, the power system analysis using IEEE 33 busbar 

test system is performed  in terms of distribution network power 

losses, busbar voltage drops and transformer loading 

conditions. 

Keywords— Electric vehicles, stochastic charging behavior, 

short-term forecasting, decomposition methods, Monte-Carlo 
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I. INTRODUCTION  

The rechargeable Electric Vehicles (EVs) powered by 
clean energy attract the interest of users in the field of 
transportation due to rising fuel prices. This growing interest 
creates uncertainty about the impact of EV bulk charging on 
the distribution network. This uncertainty is important for 
making decisions regarding the infrastructure retrofit and 
development planning of a successful network operator. The 
one of the studies suggests that strengthening the continuous 
infrastructure to avoid the grid effects of bulk EV charging 
loads would result in unsustainable costs [1]. 

Energy demand forecasting is necessary for the efficient 
operation of energy use in the smart grid. In addition, charging 
demand for electric vehicles is seen as a potential risk during 
grid peak times as it changes over time [2]. Therefore, a 
demand forecasting model needs to analyze the actual bulk 
EV charging loads. Most studies make assumptions for 
charging probabilities based on driving habit statistics of 
internal combustion engine vehicles due to the lack of real-
world EV session data in the past [3]. There are studies in the 
literature that assume that demand of each EV is constantly 
charged with the maximum power allowed by the onboard 
charging station [4,5]. This assumption does not reflect actual 

charging profiles in evaluation results made with developing 
measurement equipment [6]. Several researchers have used 
synthetic data generator based on driver behaviors for EV 
charging demand forecasting due to scarcity of actual 
charging session data of EVs [7].  However, a demand model 
has not been established using the actual demand data of EVs 
on the grid and statistical data of charging sessions. Short-term 
forecasting methods are examined under two main groups as 
traditional statistical methods and new artificial intelligence 
methods [8]. Seasonal Autoregressive Integrated Moving 
Average (SARIMA), linear regression (LR) and Exponential 
Smoothing (ES) are used as the conventional methods [9]. 
However, these conventional methods disadvantage about due 
to weakness to deal with non-linear problems. There are many 
new AI-based approaches that have become a special research 
focus in recent years, especially for nonlinear problems such 
as EV charging. These new methods is showed higher 
estimation performance compared to traditional methods [10]. 
However, the charging times of bulk EVs and the use of new 
methods for estimating their charging demands require high 
transaction complexity and time costs. In this study, a hybrid 
demand forecasting model is proposed to overcome the 
aforementioned problems. In this model, EV charging times 
are estimated with Monte Carlo Simulation (MCS) based on 
the charging behaviors of EV users. Then the Long Short-
Term Memory (LSTM) network uses to predicted charging 
times and a short-term forecasting approach based on the EV 
charging load in a real dataset for the bulk EV charging 
demands forecasting. Also, Bayesian optimization (BO) is 
used to find the optimal hyperparameters of the LSTM 
network.  

The hybrid demand forecasting model can quickly provide 
the bulk demand forecasting by finding optimum values by the 
EMD-BO-LSTM hybrid method without the need for 
extensive parameter tuning. This method has not received 
attention in the bulk charge demand forecasting of EVs, so it 
has been chosen in the forecasting model of this paper. 

 Zonggen and Don developed a model that can make 
empirical charging decisions based on a machine learning 
algorithm using past charging session data at home [11]. In 
this model, a short-term EV demand forecasting model can be 
developed at home with measurements to be made by 
electrical meters. In study [12], a total charge estimation 
model is proposed for EV charging demand using Monte 
Carlo Simulation (MCS) based on driver mobility statistics. 
However, more realistic aggregated EV demand forecasts are 
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created by using high resolution electrical meter charge 
consumption data together with mobility statistics. EV 
charging demand forecasting has been of interest in research 
in recent years. Some studies have focused on EV charge 
demand forecasting using historical charge session powers 
[13, 14]. With high temporal resolution charging power data 
from electrical meters, EV demand can be predicted in day 
ahead planning. This demand forecast is vital for grid 
integration of EVs [15]. In this way, demand forecasting 
provides a prediction for the bulk EV charging demand 
uncertainty problem during peak hours of the grid. In 
particular, the stated foresight is necessary to provide the EV 
charging demand simultaneously with other basic loads in a 
household [16]. The performance of artificial intelligence-
based forecasting methods in EV charge demand forecasting 
is higher than statistical time series analysis [17, 18]. 
Therefore, a multilayer perceptron (MLP) model with oblique 
loss function is proposed for probabilistic estimation of EV 
demand power in [19]. It has been suggested that the MLP 
model has higher performance in predicting EV charging 
demand compared to other AI methods. However, in EV 
demand forecasting, MLP cannot be interpreted due to its 
complex computational capacity [20]. In [21], the long short-
term memory (LSTM) network shows the best error 
performance for EV load estimation based on the original 
data. However, as a disadvantage of this, parameter values are 
not improved with an algorithm such as Bayesian (BO) 
optimization of hyperparameters. According to the evaluation 
of the above-mentioned papers, according to the net results of 
the error metrics, the LSTM operating in the RNN structure 
shows higher performance because it interprets the past EV 
load data and determines the future better. Actual charging 
data is a fundamental challenge in short-term EV demand 
forecasting as it is non-linear and non-stationary. Therefore, 
time series decomposition can be used to improve forecast 
performance. The hybrid demand forecasting model uses 
decomposition methods to understand time series features and 
preprocesses it to improve error performance. Wavelet-based 
decomposition [22, 23], empirical mode decomposition 
(EMD) [24], and ensemble empirical mode decomposition 
(EEMD) [25] have been widely preferred at this preprocessing 
step in the literature. According to the application areas, the 
advantages and disadvantages of each decomposition method 
change from the other. 

The bulk charging demand forecast of EVs with grid 
addicted non-stationary charging powers over a historical time 
series is not investigated in the aforementioned papers. In this 
paper, a hybrid forecasting model for EV charging demand is 
developed by combining a residence's historical EV charge 
demand dataset and driver mobility statistics. In this way, it 
was aimed to give grid operators an insight into bulk EV 
charging demands. The proposed demand forecasting model 
has two main advantages: The charging times of EVs are 
estimated based on driver mobility statistics. the test results 
present the accuracy of model prediction for comparing with 
real EV charging and EMD-BOLSTM method.  

The remainder of this paper is organized as follows: 
Section 2 describes the forecasting of charging demand from 
EV user mobility statistics. Section 3 presents short term 
demand forecasting modelling. The simulations of the 
proposed model mentioned in section 4 on distribution grid 
and the performance evulations and results are discussed. The 
conclusion is given in Section 5. 

II. THE PROBABILITY FORECASTING OF EV USER MOBILITY 

STATISTICS 

A. The anaylzes of EV user charging behaviors 

Bulk charging demand uncertainties on the grid are 
depicted temporally and spatially by EV user movement 
statistics during the day. Charging start and end time varies 
according to EV user mobility statistics. The charge demand 
of an EV defined as the power drawn from the grid at the 
duration passed between the charging start and end time in the 
charging session. The bulk charging demands of the EVs can 
cause voltage drop, increase losses and overloads of 
equipments / lines at peak times of the grid. Therefore, in the 
light of historical mobility statistics of EVs, it is based on a 
probability distribution function (PDF) by simulating the daily 
travel distances, charging start and end times in different 
countries.  

In this study, the simple charging method is assumed for 

EVs and the initial state of charge is depicted 𝑆𝑂𝐶𝑖
𝑖𝑛𝑖𝑡 within 

the specified limit values in Eq. 1. EVs drawn maximum 
power, maximum battery capacity and charging efficiency are 
indicated by 𝑃𝑖

𝑚𝑎𝑥  , 𝐶𝑖
𝑚𝑎𝑥 = 50 𝑘𝑊ℎ  and ƞ𝑐 = 90% 

respectively. Different values such as 3.7kW, 7.4kW and 
19.2kW is chosen to assume that EVs are charged at 
stochastically different power levels from onboard chargers. 
Also, the arrival charging time and departure charging time 

for each 𝑖. EV are described with 𝑡𝑖
𝑎𝑟𝑟 and 𝑡𝑖

𝑑𝑒𝑝
 in Eq. 2. The 

battery instentious SOC value of i. EV is depicted to 𝑆𝑂𝐶𝑖
𝑐, 

and it is completed by following a day. The day is formulated 
with total 𝑇 = 96  intervals with 𝜏 steps at ∆𝜏 = 1 hours time 
resolution. 

20% ≤ 𝑆𝑂𝐶𝑖
𝑖𝑛𝑖𝑡 ≤ 100% 𝑎𝑛𝑑 20% ≤ 𝑆𝑂𝐶𝑖

𝑐 ≤ 100%     (1) 

𝑆𝑂𝐶𝑖
𝑐 = ∑

ƞ𝑐𝑃𝑖
𝑚𝑎𝑥×𝜏.∆𝜏

𝐶𝑖
𝑚𝑎𝑥

𝑇
𝜏=1 𝑓𝑜𝑟𝑇 ∈ [𝑡𝑖

𝑎𝑟𝑟 , 𝑡𝑖
𝑑𝑒𝑝

]       (2) 

In this study, each EV is same properties. 𝑆𝑂𝐶𝑖
𝑖𝑛𝑖𝑡 is chosen 

according to stocastically distribution function, see [19, 26] 
for detailed information. 

B. EV mobility data 

This study base on EV parking events from travel data 
from germany MiD2008 survey open dataset for EV user 
mobility behaviors. This dataset contains the daily mobility 
behaviors of 6,465 German car users [27]. Statistics is 
recorded on different days in order to examine the mobility 
patterns of the users according to the days. In this context, the 
data has been selected to exclude holidays. In this dataset, user 
mobility data includes EV location, parking duration, arrival 
time, departure time and travel distance data.  

Figure 1 shows the probability distributions of the actual 
arrival time for the home charging event in the dataset during 
a day via curve fitting toolbox in MATLAB 2017b. The curve 
on the x-axis indicates that the home arrival event mostly 
occurs around noon or evening. According to curve fitting, the 
actual arrival times of EVs shows a gaussian distribution with 
number of terms equal three.  The goodness of fit in this 
distribution values are 0.9846, 0.9764 and 0.0082 for R-square 
value, adjusted R-square and RMSE, respectively. 
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Fig. 1. Daily Arrival Time of EVs based on Gaussian Probability 

Distribution Function 

In this study, arrival time of EVs are assumed as charging 
start times. According to dataset, most parking times are less 
than 14 hours. Figure 2 shows the parking duration of EVs and 
its probabilities. The curve on the x-axis indicates that only a 
few parking events reach the one day cooldown. Furthermore, 
the curve remains smooth, as the cars left for the next day 
usually leave the house at similar times. The parking duration 
of EVs shows a gaussian distribution with number of terms 
equal four.  The goodness of fit in this distribution values are 
0.9978, 0.9959 and 0.0028 for R-square value, adjusted R-
square and RMSE, respectively. 

 

Fig. 2. The Parking Duration of EVs based on Gaussian Probability 

Distribution Function 

Departure times are calculated by summing the arrival 
times and parking duration of the EVs. Figure 3 indicates the 
departure time of EVs and its probabilities during a day.  

 

Fig. 3. The Departure Time of EVs based on Gaussian Probability 

Distribution Function 

The curve on the x-axis indicates that the departure time 
event mostly occurs around morning or noon. The departure 
time of EVs shows a gaussian distribution with number of 
terms equal three.  The goodness of fit in this distribution 

values are 0.9841, 0.9756 and 0.0069 for R-square value, 
adjusted R-square and RMSE, respectively. 

By means of Equation 3, the initial state of charge 𝑆𝑂𝐶𝑖
𝑖𝑛𝑖𝑡 

of the i. EV is calculated from the trip distance d and energy 
consumption efficiency is assumed  𝜑 = 190𝑊ℎ per km and 
maximum distance nearly 263 km.  

                         𝑆𝑂𝐶𝑖
𝑖𝑛𝑖𝑡 =  1 −

𝜑.𝑑𝑖

𝐶𝑖
𝑚𝑎𝑥                                (3) 

Figure 4 shows the trip distance and its probability for a 
home charging event in the dataset during one day. Travel 
distance cannot be defined with a distinctive feature for any 
time period of the day. However, the majority of trip departing 
from home are shorter than 50km.  

 

Fig. 4. The Trip Distance of EVs based on Log-normal Probability 

Distribution Function 

The travel distance of EVs shows an exponential 
distribution, commonly known as a log-normal distribution, 
with the number of terms equal to one. The goodness of fit in 
this distribution values are 0.9898, 0.9894 and 0.0053 for R-
square value, adjusted R-square and RMSE, respectively. 
Researchers [28] propose that the travel distance probability 
distribution in the same dataset is a Weibull distribution. 

The stochastic charging behaviors of 100 EV users are 
produced by the monte carlo simulation taking into account 
the aforementioned arrival time, waiting time in the park, 
departure time and daily travel distance probability 
distributions. According to the MCS simulation, the bulk 
charging demand of EVs shows in fig. 5.  

 

Fig. 5. The Bulk Charging Demand of EVs based on MCS simulation 

The produced charging powers by the monte carlo 
simulation, fully is indicates to maximum charging powers 
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such as 3.7kW, 7.4kW and 19.2 kW. These powers are not 
always used to during charging duration.  Therefore, the MCS 
samples of EV user behaviour is applied as the inputs of 
demand forecasting model based on actual charging power 
data in section III. 

III. DEMAND FORECASTING MODEL AND EVALUATION 

In general, few previous studies have looked into 
estimating the power outputs of renewable energy sources and 
the power load of appliances in household. Many new AI-
based approaches are being used in recent years, which has 
become a particular research focus in EV charging demands 
along with other essential loads in households. However, 
general AI-based approaches often do not achieve the best 
prediction results due to poor learning ability and the ability 
to ignore time dependencies in the data. Therefore, there is a 
need for a hybrid forecasting model that performs better in 
features representation and takes into account time 
dependencies. 

A. Empirical Mode Decomposition (EMD)  

The EMD method is based on the Hilbert Huang 
Transform (HHT) algorithm.  This method decomposes the 
original signal into multiple Internal Mode Functions (IMFs) 
and a single residue (Rn). non-linear and non-stationary 
signals can be analyzed with the help of HHT. In this study, 
EMD algorithm is applied to decompose the original data as a 
first step due to the electric vehicle load signals have these 
characteristics. each IMF is characterized by having only one 
endpoint between zero crossings and having a mean value of 
zero. Assuming a given original EV load demand time series 
x(t), the processing steps of the EMD are defined as follows 
[48]: 

Step 1: Determine all local extremes in the 𝑥(𝑡) signal. 

Then, the upper envelope 𝑥𝑢(𝑡) is calculated by combining 

all local maximums through a cubic spline, and the lower 

envelope 𝑥𝑙(𝑡)is formed by doing the same for local minima. 

Step 2: Mean to the envelopes and calculate to the 

difference between the actual data series 𝑥(𝑡) and the mean 

𝑚(𝑡) in Eq. (4) and Eq. (5), respectively: 

 

𝑚(𝑡) =
𝑥𝑢(𝑡)+𝑥𝑙(𝑡)

2
      (4) 

 

                      𝑑(𝑡) = 𝑥(𝑡) − 𝑚(𝑡)      (5) 

 

Step 3: According to the case in (3), the process continues 

until d(𝑡) becomes an IMF: 

 

      ∑ [
𝑑𝑗−1(𝑡)+𝑑𝑗(𝑡)

𝑑𝑗−1(𝑡)
]

2

≤ 𝛿(𝑗 = 1,2, . ; 𝑡 = 1,2, . , 𝑙)𝑙
𝑡=1       (6) 

 

where, 𝑙 and j are the signal length and the iteration 

number of sifting process, respectively. d(𝑡) is selected as a 

constant value usually between 0.2 and 0.3. 

 

Step 4: Repeating the first three steps is terminated when 

all IMFs and residue signal are found. Finally, the original 

time series x(t) can be expressed as an addition of IMFs 𝐶𝑖(𝑡) 

and single residue 𝑅𝑛(𝑡) as given follows: 

 

𝑥(𝑡) = ∑ 𝐶𝑖(𝑡) + 𝑅𝑛(𝑡)𝑁
𝑖=1         (7) 

 

 

B. Bayesian Optimized Long Short-term Memory Network 

 A recursive neural network (RNN) takes as input the 
current state sample and information from the previous state 
hidden layer in each loop. The output is calculated based on 
the given hidden state. The hidden state is similar to the 
memory unit in terms of RNN. Since the relationship of 
successive states is continuous, each input affects the output. 
To overcome this problem, it is proposed to reparameterize the 
RNN with the LSTM network. The LSTM network is a special 
RNN with special capabilities such as applying feedback 
functions and memory-weighted coupling [18]. The LSTM 
network is mainly suitable for modeling temporal horizon-
based sequences. An input vector for the always horizon is 
included in the LSTM cell. The 𝑥𝑡 input vector, state vector as 
ℎ𝑡  at time 𝑡  and ℎ𝑡−1  at time 𝑡 − 1, the 𝑓𝑤(ℎ, 𝑥) non linear 
activation function, the 𝑤 weight parameter is symbolized in 
eq. 8. 

          ℎ𝑡 = 𝑓𝑤(ℎ𝑡−1 , 𝑥𝑡)            (8) 

LSTM operations are calculated by applying the operations 
between equation (9) and equation (16). In LSTM 
architecture, there are three gates for control as input gate, 
forget gate and output gate [28]. 

  𝐹(𝑡) = 𝜎(𝑊𝑓 · [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑓)      (9) 

    𝐼(𝑡) = 𝜎(𝑊𝑖 · [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑖)     (10) 

  �̃�(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑐)     (11) 

      𝐶(𝑡) = 𝑓𝑖 ∗ (𝐶𝑡−1 + 𝐼𝑡 ∗ �̃�(𝑡))     (12) 

  𝑂(𝑡) = σ(𝑊𝑜 ⋅ [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑜)     (13) 

   𝐻(𝑡) = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)      (14) 

     𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥      (15) 

         𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥      (16) 

Where the sequential input is indicated by 𝑋𝑡. The weights 
of bias is given as 𝑏𝑓  𝑏𝑖  𝑏𝑐  and 𝑏𝑜 . The input weights 

represent with 𝑊𝑓  , 𝑊𝑖  , 𝑊𝑖  and 𝑊𝑜 , respectively. Also 𝑡  is 

the step of latest time and 𝑡 − 1 is the step of previous time; 
𝐻(𝑡)  and 𝐶(𝑡)  describes to the output and the cell state 
respectively. Also, Bayesian optimization algorithm [29] is 
used to find the optimal hyperparameters of the LSTM 
network as given in fig. 6.  

 

Fig. 6. The LSTM network architecture and Bayesian Optimizer 
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This algorithm is recommended for solving problems also 
known as complex black box problems [30, 31]. The 
algorithm deals with the previous parameter information 
determined based on the Gaussian process, and its previous 
value is constantly modified. The BO-LSTM based EV charge 
demand prediction model proposed in this paper is basically 
the hyper-parameters such as epoch, batch size, initial learning 
rate, dropout value, optimizer, number of layers, number of 
neurons in each layer, and time lag windows are shown in 
table 1. 

TABLE I.  LSTM AND BO-LSTM HYPERPARAMETERS IN TRAINING 

NETWORK 

Parameters 
Type of AI-based network 

LSTM BO-LSTM 

Epochs 1000 1000 

Batch size 16 8 

Learning rate 0.005 0.01 

Dropout value 0.5 0.5 

Optimizer Adam Adam 

Layers 4 4 

Neurons 100 200 

Time lag 

window 
24 14 

IV. SIMULATION RESULTS 

The IEEE 33 bus test system is modeled through Digsilent 
PowerFactory software in order to investigate the effects of 
actual charging of electric vehicles on the distribution network 
with MCS-based charging behavior. The model for 
forecasting bulk charging of EVs with MCS simulation is 
connected into the distribution network via bus-1, MCS-based 
charging behavior and real charging powers bus-2, and EMD-
BO-LSTM demand forecasting model based on real charging 
powers via bus-3 as given in Figure 7.  

 

Fig. 7. The IEEE 33 bus test system 

The step-down transformer with a 500kVA 12.66/0.4 kV 
connected to these busbars, hence the voltage value is reduced 
to the low voltage level. It is assumed that EV charging units 
are connected to 3-phase 50 Hertz (Hz) AC 0.4 kV busbars. In 
Figure 8, the grid effects of EVs charged on the basis of MCS 
during the day are given over transformer loading, transformer 
losses and voltage drops in the bus-1, which is the farthest 
busbar. According to the network effect indicators created 
according to MCS, it is observed that the transformer is 
overloaded and the busbar voltage is below the allowable 
values. In this case study, it is the scenario where EVs are 
charged at 3 different maximum charging power in user 
behavior according to MCS. However, in reality, EVs do not 
use the same maximum charging power during the charging 
period, due to their battery charge status and network status 
during the charging period. For its real grid application, the 
meter consumption profiles of the real charging are modeled 
on the charging behaviors and properties produced by MCS. 
Accordingly, transformer loading and busbar voltage drops 
are realized as in figure 9 within the allowed network and 
equipment limits. In addition, the level of transformer losses 
has decreased by about 5 kW compared to the previous 
situation. In order to compare the hybrid charge demand 
forecasting model with the actual consumption profiles here, 
it is desired to give the transformer load in the network, losses 
and voltage drop in the busbar in Figure 10. Accordingly, the 
hybrid demand forecasting model with EMD-BO-LSTM is 
more accurate to actual bulk charging demands than the 
maximum charging powers demand forecasting model with 
MCS. Especially at the grid peak time, the error of this 
accuracy is found to 0.79% in transformer peak load, 0.038 
kW in transformer loss power and 0.0004 p.u. in busbar 
voltage drop. 

 

Fig. 8. The Bulk charging demand via MCS simulation 
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Fig. 9. The Bulk actual charging demand via MCS simulation and actual 

data 

 

Fig. 10. The Bulk actual charging demand via MCS simulation and 

forecasting data 

V. CONCLUSIONS 

In this paper, the charging time model are derived from a 
real statistics based electric vehicles driver behaviour via 
MCS. By using the data produced by MCS, grid effects of EVs 
at maximum charging power were evaluated. A daily bulk 
charge demand profile was created with the combination of 
real EV charge consumption meter dataset, MCS simulation 
according to EV user statistics and charge times. The short-
term bulk charge demand estimation model made with EMD-
BO-LSTM is compared with the demand model with MCS 
using maximum charging powers for transformer loading, 
losses and busbar voltage drop at grid scale. The study here is 
that in areas with network problems, short-term demand 
forecasts here can be used to guide grid operators when real 
charging data is not available. This can facilitate grid 
operation of existing bulk EV charging demands. In future 
studies, temporal scheduling of load will be evaluated for 
short-term bulk EV charge demand forecasting based on 
actual charge demands. 
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